2020-08-16 13:39:22 +02:00
|
|
|
|
[sdf] Structs, enums, macros, and functions for 'sdf' rasterizer.
* src/sdf/ftsdf.c (FT_DEBUG_INNER, FT_ASSIGNP_INNER)
[FT_DEBUG_LEVEL_TRACE && FT_DEBUG_MEMORY]: New macros.
(SDF_MemoryUser) [FT_DEBUG_LEVEL_TRACE && FT_DEBUG_MEMORY]: New
struct for memory usage tracing.
(sdf_alloc, sdf_free) [FT_DEBUG_LEVEL_TRACE && FT_DEBUG_MEMORY]: New
functions for memory usage tracing.
(SDF_ALLOC, SDF_FREE): New macros for memory management.
(SDF_MEMORY_TRACKER_DECLARE, SDF_MEMORY_TRACKER_SETUP,
SDF_MEMORY_TRACKER_DONE): New macros to set up memory usage tracing.
(USE_NEWTON_FOR_CONIC, MAX_NEWTON_DIVISIONS, MAX_NEWTON_STEPS,
CORNER_CHECK_EPSILON, CG_DIMEN): New configuration macros for
controlling the process of finding the shortest distance.
(MUL_26D6, VEC_26D6_DOT): New auxiliary macros.
(SDF_TRaster, SDF_Edge, SDF_Contour, SDF_Shape, SDF_Signed_Distance,
SDF_Params): New structs for setting up SDF data.
(SDF_Edge_Type, SDF_Contour_Orientation): New enums for SDF data.
(zero_vector, null_edge, null_contour, null_shape, max_sdf): Useful
constants.
(sdf_edge_new, sdf_edge_done, sdf_contour_new, sdf_contour_done,
sdf_shape_new, sdf_shape_done): New constructors and destructors.
2020-08-17 12:54:39 +02:00
|
|
|
#include <freetype/internal/ftobjs.h>
|
|
|
|
#include <freetype/internal/ftdebug.h>
|
|
|
|
#include <freetype/fttrigon.h>
|
|
|
|
#include "ftsdf.h"
|
|
|
|
|
|
|
|
#include "ftsdferrs.h"
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* for tracking used memory
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* The memory tracker only works when `FT_DEBUG_MEMORY` is defined; */
|
|
|
|
/* we need some variables such as `_ft_debug_file`, which aren't */
|
|
|
|
/* available otherwise. */
|
|
|
|
#if defined( FT_DEBUG_LEVEL_TRACE ) && defined( FT_DEBUG_MEMORY )
|
|
|
|
|
|
|
|
|
|
|
|
#undef FT_DEBUG_INNER
|
|
|
|
#undef FT_ASSIGNP_INNER
|
|
|
|
|
|
|
|
#define FT_DEBUG_INNER( exp ) ( _ft_debug_file = __FILE__, \
|
|
|
|
_ft_debug_lineno = line, \
|
|
|
|
(exp) )
|
|
|
|
#define FT_ASSIGNP_INNER( p, exp ) ( _ft_debug_file = __FILE__, \
|
|
|
|
_ft_debug_lineno = line, \
|
|
|
|
FT_ASSIGNP( p, exp ) )
|
|
|
|
|
|
|
|
|
|
|
|
/* To be used with `FT_Memory::user' in order to track */
|
|
|
|
/* memory allocations. */
|
|
|
|
typedef struct SDF_MemoryUser_
|
|
|
|
{
|
|
|
|
void* prev_user;
|
|
|
|
FT_Long total_usage;
|
|
|
|
|
|
|
|
} SDF_MemoryUser;
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These functions are used while allocating and deallocating memory.
|
|
|
|
* They restore the previous user pointer before calling the allocation
|
|
|
|
* functions.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static FT_Pointer
|
|
|
|
sdf_alloc( FT_Memory memory,
|
|
|
|
FT_Long size,
|
|
|
|
FT_Error* err,
|
|
|
|
FT_Int line )
|
|
|
|
{
|
|
|
|
SDF_MemoryUser* current_user;
|
|
|
|
FT_Pointer ptr;
|
|
|
|
FT_Error error;
|
|
|
|
|
|
|
|
|
|
|
|
current_user = (SDF_MemoryUser*)memory->user;
|
|
|
|
memory->user = current_user->prev_user;
|
|
|
|
|
|
|
|
if ( !FT_QALLOC( ptr, size ) )
|
|
|
|
current_user->total_usage += size;
|
|
|
|
|
|
|
|
memory->user = (void*)current_user;
|
|
|
|
*err = error;
|
|
|
|
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
sdf_free( FT_Memory memory,
|
|
|
|
FT_Pointer ptr,
|
|
|
|
FT_Int line )
|
|
|
|
{
|
|
|
|
SDF_MemoryUser* current_user;
|
|
|
|
|
|
|
|
|
|
|
|
current_user = (SDF_MemoryUser*)memory->user;
|
|
|
|
memory->user = current_user->prev_user;
|
|
|
|
|
|
|
|
FT_FREE( ptr );
|
|
|
|
|
|
|
|
memory->user = (void*)current_user;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#define SDF_ALLOC( ptr, size ) \
|
|
|
|
( ptr = sdf_alloc( memory, size, \
|
|
|
|
&error, __LINE__ ), \
|
|
|
|
error != 0 )
|
|
|
|
|
|
|
|
#define SDF_FREE( ptr ) \
|
|
|
|
sdf_free( memory, ptr, __LINE__ )
|
|
|
|
|
|
|
|
#define SDF_MEMORY_TRACKER_DECLARE() SDF_MemoryUser sdf_memory_user
|
|
|
|
|
|
|
|
#define SDF_MEMORY_TRACKER_SETUP() \
|
|
|
|
sdf_memory_user.prev_user = memory->user; \
|
|
|
|
sdf_memory_user.total_usage = 0; \
|
|
|
|
memory->user = &sdf_memory_user
|
|
|
|
|
|
|
|
#define SDF_MEMORY_TRACKER_DONE() \
|
|
|
|
memory->user = sdf_memory_user.prev_user; \
|
|
|
|
\
|
|
|
|
FT_TRACE0(( "[sdf] sdf_raster_render:" \
|
|
|
|
" Total memory used = %ld\n", \
|
|
|
|
sdf_memory_user.total_usage ))
|
|
|
|
|
|
|
|
|
|
|
|
#else /* !FT_DEBUG_LEVEL_TRACE */
|
|
|
|
|
|
|
|
|
|
|
|
#define SDF_ALLOC FT_QALLOC
|
|
|
|
#define SDF_FREE FT_FREE
|
|
|
|
|
|
|
|
#define SDF_MEMORY_TRACKER_DECLARE() FT_DUMMY_STMNT
|
|
|
|
#define SDF_MEMORY_TRACKER_SETUP() FT_DUMMY_STMNT
|
|
|
|
#define SDF_MEMORY_TRACKER_DONE() FT_DUMMY_STMNT
|
|
|
|
|
|
|
|
|
|
|
|
#endif /* !FT_DEBUG_LEVEL_TRACE */
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* definitions
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If set to 1, the rasterizer uses Newton-Raphson's method for finding
|
|
|
|
* the shortest distance from a point to a conic curve.
|
|
|
|
*
|
|
|
|
* If set to 0, an analytical method gets used instead, which computes the
|
|
|
|
* roots of a cubic polynomial to find the shortest distance. However,
|
|
|
|
* the analytical method can currently underflow; we thus use Newton's
|
|
|
|
* method by default.
|
|
|
|
*/
|
|
|
|
#ifndef USE_NEWTON_FOR_CONIC
|
|
|
|
#define USE_NEWTON_FOR_CONIC 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The number of intervals a Bezier curve gets sampled and checked to find
|
|
|
|
* the shortest distance.
|
|
|
|
*/
|
|
|
|
#define MAX_NEWTON_DIVISIONS 4
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The number of steps of Newton's iterations in each interval of the
|
|
|
|
* Bezier curve. Basically, we run Newton's approximation
|
|
|
|
*
|
|
|
|
* x -= Q(t) / Q'(t)
|
|
|
|
*
|
|
|
|
* for each division to get the shortest distance.
|
|
|
|
*/
|
|
|
|
#define MAX_NEWTON_STEPS 4
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The epsilon distance (in 16.16 fractional units) used for corner
|
|
|
|
* resolving. If the difference of two distances is less than this value
|
|
|
|
* they will be checked for a corner if they are ambiguous.
|
|
|
|
*/
|
|
|
|
#define CORNER_CHECK_EPSILON 32
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
/*
|
|
|
|
* Coarse grid dimension. Will probably be removed in the future because
|
|
|
|
* coarse grid optimization is the slowest algorithm.
|
|
|
|
*/
|
|
|
|
#define CG_DIMEN 8
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* macros
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define MUL_26D6( a, b ) ( ( ( a ) * ( b ) ) / 64 )
|
|
|
|
#define VEC_26D6_DOT( p, q ) ( MUL_26D6( p.x, q.x ) + \
|
|
|
|
MUL_26D6( p.y, q.y ) )
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* structures and enums
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Struct:
|
|
|
|
* SDF_TRaster
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* This struct is used in place of @FT_Raster and is stored within the
|
|
|
|
* internal FreeType renderer struct. While rasterizing it is passed to
|
|
|
|
* the @FT_Raster_RenderFunc function, which then can be used however we
|
|
|
|
* want.
|
|
|
|
*
|
|
|
|
* @Fields:
|
|
|
|
* memory ::
|
|
|
|
* Used internally to allocate intermediate memory while raterizing.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
typedef struct SDF_TRaster_
|
|
|
|
{
|
|
|
|
FT_Memory memory;
|
|
|
|
|
|
|
|
} SDF_TRaster;
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Enum:
|
|
|
|
* SDF_Edge_Type
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Enumeration of all curve types present in fonts.
|
|
|
|
*
|
|
|
|
* @Fields:
|
|
|
|
* SDF_EDGE_UNDEFINED ::
|
|
|
|
* Undefined edge, simply used to initialize and detect errors.
|
|
|
|
*
|
|
|
|
* SDF_EDGE_LINE ::
|
|
|
|
* Line segment with start and end point.
|
|
|
|
*
|
|
|
|
* SDF_EDGE_CONIC ::
|
|
|
|
* A conic/quadratic Bezier curve with start, end, and one control
|
|
|
|
* point.
|
|
|
|
*
|
|
|
|
* SDF_EDGE_CUBIC ::
|
|
|
|
* A cubic Bezier curve with start, end, and two control points.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
typedef enum SDF_Edge_Type_
|
|
|
|
{
|
|
|
|
SDF_EDGE_UNDEFINED = 0,
|
|
|
|
SDF_EDGE_LINE = 1,
|
|
|
|
SDF_EDGE_CONIC = 2,
|
|
|
|
SDF_EDGE_CUBIC = 3
|
|
|
|
|
|
|
|
} SDF_Edge_Type;
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Enum:
|
|
|
|
* SDF_Contour_Orientation
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Enumeration of all orientation values of a contour. We determine the
|
|
|
|
* orientation by calculating the area covered by a contour. Contrary
|
|
|
|
* to values returned by @FT_Outline_Get_Orientation,
|
|
|
|
* `SDF_Contour_Orientation` is independent of the fill rule, which can
|
|
|
|
* be different for different font formats.
|
|
|
|
*
|
|
|
|
* @Fields:
|
|
|
|
* SDF_ORIENTATION_NONE ::
|
|
|
|
* Undefined orientation, used for initialization and error detection.
|
|
|
|
*
|
|
|
|
* SDF_ORIENTATION_CW ::
|
|
|
|
* Clockwise orientation (positive area covered).
|
|
|
|
*
|
|
|
|
* SDF_ORIENTATION_ACW ::
|
|
|
|
* Anti-clockwise orientation (negative area covered).
|
|
|
|
*
|
|
|
|
* @Note:
|
|
|
|
* See @FT_Outline_Get_Orientation for more details.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
typedef enum SDF_Contour_Orientation_
|
|
|
|
{
|
|
|
|
SDF_ORIENTATION_NONE = 0,
|
|
|
|
SDF_ORIENTATION_CW = 1,
|
|
|
|
SDF_ORIENTATION_ACW = 2
|
|
|
|
|
|
|
|
} SDF_Contour_Orientation;
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Struct:
|
|
|
|
* SDF_Edge
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Represent an edge of a contour.
|
|
|
|
*
|
|
|
|
* @Fields:
|
|
|
|
* start_pos ::
|
|
|
|
* Start position of an edge. Valid for all types of edges.
|
|
|
|
*
|
|
|
|
* end_pos ::
|
|
|
|
* Etart position of an edge. Valid for all types of edges.
|
|
|
|
*
|
|
|
|
* control_a ::
|
|
|
|
* A control point of the edge. Valid only for `SDF_EDGE_CONIC`
|
|
|
|
* and `SDF_EDGE_CUBIC`.
|
|
|
|
*
|
|
|
|
* control_b ::
|
|
|
|
* Another control point of the edge. Valid only for
|
|
|
|
* `SDF_EDGE_CONIC`.
|
|
|
|
*
|
|
|
|
* edge_type ::
|
|
|
|
* Type of the edge, see @SDF_Edge_Type for all possible edge types.
|
|
|
|
*
|
|
|
|
* next ::
|
|
|
|
* Used to create a singly linked list, which can be interpreted
|
|
|
|
* as a contour.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
typedef struct SDF_Edge_
|
|
|
|
{
|
|
|
|
FT_26D6_Vec start_pos;
|
|
|
|
FT_26D6_Vec end_pos;
|
|
|
|
FT_26D6_Vec control_a;
|
|
|
|
FT_26D6_Vec control_b;
|
|
|
|
|
|
|
|
SDF_Edge_Type edge_type;
|
|
|
|
|
|
|
|
struct SDF_Edge_* next;
|
|
|
|
|
|
|
|
} SDF_Edge;
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Struct:
|
|
|
|
* SDF_Contour
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Represent a complete contour, which contains a list of edges.
|
|
|
|
*
|
|
|
|
* @Fields:
|
|
|
|
* last_pos ::
|
|
|
|
* Contains the value of `end_pos' of the last edge in the list of
|
|
|
|
* edges. Useful while decomposing the outline with
|
|
|
|
* @FT_Outline_Decompose.
|
|
|
|
*
|
|
|
|
* edges ::
|
|
|
|
* Linked list of all the edges that make the contour.
|
|
|
|
*
|
|
|
|
* next ::
|
|
|
|
* Used to create a singly linked list, which can be interpreted as a
|
|
|
|
* complete shape or @FT_Outline.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
typedef struct SDF_Contour_
|
|
|
|
{
|
|
|
|
FT_26D6_Vec last_pos;
|
|
|
|
SDF_Edge* edges;
|
|
|
|
|
|
|
|
struct SDF_Contour_* next;
|
|
|
|
|
|
|
|
} SDF_Contour;
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Struct:
|
|
|
|
* SDF_Shape
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Represent a complete shape, which is the decomposition of
|
|
|
|
* @FT_Outline.
|
|
|
|
*
|
|
|
|
* @Fields:
|
|
|
|
* memory ::
|
|
|
|
* Used internally to allocate memory.
|
|
|
|
*
|
|
|
|
* contours ::
|
|
|
|
* Linked list of all the contours that make the shape.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
typedef struct SDF_Shape_
|
|
|
|
{
|
|
|
|
FT_Memory memory;
|
|
|
|
SDF_Contour* contours;
|
|
|
|
|
|
|
|
} SDF_Shape;
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Struct:
|
|
|
|
* SDF_Signed_Distance
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Represent signed distance of a point, i.e., the distance of the edge
|
|
|
|
* nearest to the point.
|
|
|
|
*
|
|
|
|
* @Fields:
|
|
|
|
* distance ::
|
|
|
|
* Distance of the point from the nearest edge. Can be squared or
|
|
|
|
* absolute depending on the `USE_SQUARED_DISTANCES` macro defined in
|
|
|
|
* file `ftsdfcommon.h`.
|
|
|
|
*
|
|
|
|
* cross ::
|
|
|
|
* Cross product of the shortest distance vector (i.e., the vector
|
|
|
|
* from the point to the nearest edge) and the direction of the edge
|
|
|
|
* at the nearest point. This is used to resolve ambiguities of
|
|
|
|
* `sign`.
|
|
|
|
*
|
|
|
|
* sign ::
|
|
|
|
* A value used to indicate whether the distance vector is outside or
|
|
|
|
* inside the contour corresponding to the edge.
|
|
|
|
*
|
|
|
|
* @Note:
|
|
|
|
* `sign` may or may not be correct, therefore it must be checked
|
|
|
|
* properly in case there is an ambiguity.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
typedef struct SDF_Signed_Distance_
|
|
|
|
{
|
|
|
|
FT_16D16 distance;
|
|
|
|
FT_16D16 cross;
|
|
|
|
FT_Char sign;
|
|
|
|
|
|
|
|
} SDF_Signed_Distance;
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Struct:
|
|
|
|
* SDF_Params
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Yet another internal parameters required by the rasterizer.
|
|
|
|
*
|
|
|
|
* @Fields:
|
|
|
|
* orientation ::
|
|
|
|
* This is not the @SDF_Contour_Orientation value but @FT_Orientation,
|
|
|
|
* which determines whether clockwise-oriented outlines are to be
|
|
|
|
* filled or anti-clockwise-oriented ones.
|
|
|
|
*
|
|
|
|
* flip_sign ::
|
|
|
|
* If set to true, flip the sign. By default the points filled by the
|
|
|
|
* outline are positive.
|
|
|
|
*
|
|
|
|
* flip_y ::
|
|
|
|
* If set to true the output bitmap is upside-down. Can be useful
|
|
|
|
* because OpenGL and DirectX use different coordinate systems for
|
|
|
|
* textures.
|
|
|
|
*
|
|
|
|
* overload_sign ::
|
|
|
|
* In the subdivision and bounding box optimization, the default
|
|
|
|
* outside sign is taken as -1. This parameter can be used to modify
|
|
|
|
* that behaviour. For example, while generating SDF for a single
|
|
|
|
* counter-clockwise contour, the outside sign should be 1.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
typedef struct SDF_Params_
|
|
|
|
{
|
|
|
|
FT_Orientation orientation;
|
|
|
|
FT_Bool flip_sign;
|
|
|
|
FT_Bool flip_y;
|
|
|
|
|
|
|
|
FT_Int overload_sign;
|
|
|
|
|
|
|
|
} SDF_Params;
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* constants, initializer, and destructor
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
static
|
|
|
|
const FT_Vector zero_vector = { 0, 0 };
|
|
|
|
|
|
|
|
static
|
|
|
|
const SDF_Edge null_edge = { { 0, 0 }, { 0, 0 },
|
|
|
|
{ 0, 0 }, { 0, 0 },
|
|
|
|
SDF_EDGE_UNDEFINED, NULL };
|
|
|
|
|
|
|
|
static
|
|
|
|
const SDF_Contour null_contour = { { 0, 0 }, NULL, NULL };
|
|
|
|
|
|
|
|
static
|
|
|
|
const SDF_Shape null_shape = { NULL, NULL };
|
|
|
|
|
|
|
|
static
|
|
|
|
const SDF_Signed_Distance max_sdf = { INT_MAX, 0, 0 };
|
|
|
|
|
|
|
|
|
|
|
|
/* Create a new @SDF_Edge on the heap and assigns the `edge` */
|
|
|
|
/* pointer to the newly allocated memory. */
|
|
|
|
static FT_Error
|
|
|
|
sdf_edge_new( FT_Memory memory,
|
|
|
|
SDF_Edge** edge )
|
|
|
|
{
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
SDF_Edge* ptr = NULL;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !memory || !edge )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( !SDF_ALLOC( ptr, sizeof ( *ptr ) ) )
|
|
|
|
{
|
|
|
|
*ptr = null_edge;
|
|
|
|
*edge = ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Free the allocated `edge` variable. */
|
|
|
|
static void
|
|
|
|
sdf_edge_done( FT_Memory memory,
|
|
|
|
SDF_Edge** edge )
|
|
|
|
{
|
|
|
|
if ( !memory || !edge || !*edge )
|
|
|
|
return;
|
|
|
|
|
|
|
|
SDF_FREE( *edge );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Create a new @SDF_Contour on the heap and assign */
|
|
|
|
/* the `contour` pointer to the newly allocated memory. */
|
|
|
|
static FT_Error
|
|
|
|
sdf_contour_new( FT_Memory memory,
|
|
|
|
SDF_Contour** contour )
|
|
|
|
{
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
SDF_Contour* ptr = NULL;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !memory || !contour )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( !SDF_ALLOC( ptr, sizeof ( *ptr ) ) )
|
|
|
|
{
|
|
|
|
*ptr = null_contour;
|
|
|
|
*contour = ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Free the allocated `contour` variable. */
|
|
|
|
/* Also free the list of edges. */
|
|
|
|
static void
|
|
|
|
sdf_contour_done( FT_Memory memory,
|
|
|
|
SDF_Contour** contour )
|
|
|
|
{
|
|
|
|
SDF_Edge* edges;
|
|
|
|
SDF_Edge* temp;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !memory || !contour || !*contour )
|
|
|
|
return;
|
|
|
|
|
|
|
|
edges = (*contour)->edges;
|
|
|
|
|
|
|
|
/* release all edges */
|
|
|
|
while ( edges )
|
|
|
|
{
|
|
|
|
temp = edges;
|
|
|
|
edges = edges->next;
|
|
|
|
|
|
|
|
sdf_edge_done( memory, &temp );
|
|
|
|
}
|
|
|
|
|
|
|
|
SDF_FREE( *contour );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Create a new @SDF_Shape on the heap and assign */
|
|
|
|
/* the `shape` pointer to the newly allocated memory. */
|
|
|
|
static FT_Error
|
|
|
|
sdf_shape_new( FT_Memory memory,
|
|
|
|
SDF_Shape** shape )
|
|
|
|
{
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
SDF_Shape* ptr = NULL;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !memory || !shape )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( !SDF_ALLOC( ptr, sizeof ( *ptr ) ) )
|
|
|
|
{
|
|
|
|
*ptr = null_shape;
|
|
|
|
ptr->memory = memory;
|
|
|
|
*shape = ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Free the allocated `shape` variable. */
|
|
|
|
/* Also free the list of contours. */
|
|
|
|
static void
|
|
|
|
sdf_shape_done( SDF_Shape** shape )
|
|
|
|
{
|
|
|
|
FT_Memory memory;
|
|
|
|
SDF_Contour* contours;
|
|
|
|
SDF_Contour* temp;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !shape || !*shape )
|
|
|
|
return;
|
|
|
|
|
|
|
|
memory = (*shape)->memory;
|
|
|
|
contours = (*shape)->contours;
|
|
|
|
|
|
|
|
if ( !memory )
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* release all contours */
|
|
|
|
while ( contours )
|
|
|
|
{
|
|
|
|
temp = contours;
|
|
|
|
contours = contours->next;
|
|
|
|
|
|
|
|
sdf_contour_done( memory, &temp );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* release the allocated shape struct */
|
|
|
|
SDF_FREE( *shape );
|
|
|
|
}
|
2020-08-16 13:39:22 +02:00
|
|
|
|
2020-08-17 13:06:30 +02:00
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* shape decomposition functions
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* This function is called when starting a new contour at `to`, */
|
|
|
|
/* which gets added to the shape's list. */
|
|
|
|
static FT_Error
|
|
|
|
sdf_move_to( const FT_26D6_Vec* to,
|
|
|
|
void* user )
|
|
|
|
{
|
|
|
|
SDF_Shape* shape = ( SDF_Shape* )user;
|
|
|
|
SDF_Contour* contour = NULL;
|
|
|
|
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
FT_Memory memory = shape->memory;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !to || !user )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
FT_CALL( sdf_contour_new( memory, &contour ) );
|
|
|
|
|
|
|
|
contour->last_pos = *to;
|
|
|
|
contour->next = shape->contours;
|
|
|
|
shape->contours = contour;
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* This function is called when there is a line in the */
|
|
|
|
/* contour. The line starts at the previous edge point and */
|
|
|
|
/* stops at `to`. */
|
|
|
|
static FT_Error
|
|
|
|
sdf_line_to( const FT_26D6_Vec* to,
|
|
|
|
void* user )
|
|
|
|
{
|
|
|
|
SDF_Shape* shape = ( SDF_Shape* )user;
|
|
|
|
SDF_Edge* edge = NULL;
|
|
|
|
SDF_Contour* contour = NULL;
|
|
|
|
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
FT_Memory memory = shape->memory;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !to || !user )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
contour = shape->contours;
|
|
|
|
|
|
|
|
if ( contour->last_pos.x == to->x &&
|
|
|
|
contour->last_pos.y == to->y )
|
|
|
|
goto Exit;
|
|
|
|
|
|
|
|
FT_CALL( sdf_edge_new( memory, &edge ) );
|
|
|
|
|
|
|
|
edge->edge_type = SDF_EDGE_LINE;
|
|
|
|
edge->start_pos = contour->last_pos;
|
|
|
|
edge->end_pos = *to;
|
|
|
|
|
|
|
|
edge->next = contour->edges;
|
|
|
|
contour->edges = edge;
|
|
|
|
contour->last_pos = *to;
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* This function is called when there is a conic Bezier curve */
|
|
|
|
/* in the contour. The curve starts at the previous edge point */
|
|
|
|
/* and stops at `to`, with control point `control_1`. */
|
|
|
|
static FT_Error
|
|
|
|
sdf_conic_to( const FT_26D6_Vec* control_1,
|
|
|
|
const FT_26D6_Vec* to,
|
|
|
|
void* user )
|
|
|
|
{
|
|
|
|
SDF_Shape* shape = ( SDF_Shape* )user;
|
|
|
|
SDF_Edge* edge = NULL;
|
|
|
|
SDF_Contour* contour = NULL;
|
|
|
|
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
FT_Memory memory = shape->memory;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !control_1 || !to || !user )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
contour = shape->contours;
|
|
|
|
|
|
|
|
FT_CALL( sdf_edge_new( memory, &edge ) );
|
|
|
|
|
|
|
|
edge->edge_type = SDF_EDGE_CONIC;
|
|
|
|
edge->start_pos = contour->last_pos;
|
|
|
|
edge->control_a = *control_1;
|
|
|
|
edge->end_pos = *to;
|
|
|
|
|
|
|
|
edge->next = contour->edges;
|
|
|
|
contour->edges = edge;
|
|
|
|
contour->last_pos = *to;
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* This function is called when there is a cubic Bezier curve */
|
|
|
|
/* in the contour. The curve starts at the previous edge point */
|
|
|
|
/* and stops at `to`, with two control points `control_1` and */
|
|
|
|
/* `control_2`. */
|
|
|
|
static FT_Error
|
|
|
|
sdf_cubic_to( const FT_26D6_Vec* control_1,
|
|
|
|
const FT_26D6_Vec* control_2,
|
|
|
|
const FT_26D6_Vec* to,
|
|
|
|
void* user )
|
|
|
|
{
|
|
|
|
SDF_Shape* shape = ( SDF_Shape* )user;
|
|
|
|
SDF_Edge* edge = NULL;
|
|
|
|
SDF_Contour* contour = NULL;
|
|
|
|
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
FT_Memory memory = shape->memory;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !control_2 || !control_1 || !to || !user )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
contour = shape->contours;
|
|
|
|
|
|
|
|
FT_CALL( sdf_edge_new( memory, &edge ) );
|
|
|
|
|
|
|
|
edge->edge_type = SDF_EDGE_CUBIC;
|
|
|
|
edge->start_pos = contour->last_pos;
|
|
|
|
edge->control_a = *control_1;
|
|
|
|
edge->control_b = *control_2;
|
|
|
|
edge->end_pos = *to;
|
|
|
|
|
|
|
|
edge->next = contour->edges;
|
|
|
|
contour->edges = edge;
|
|
|
|
contour->last_pos = *to;
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Construct the structure to hold all four outline */
|
|
|
|
/* decomposition functions. */
|
|
|
|
FT_DEFINE_OUTLINE_FUNCS(
|
|
|
|
sdf_decompose_funcs,
|
|
|
|
|
|
|
|
(FT_Outline_MoveTo_Func) sdf_move_to, /* move_to */
|
|
|
|
(FT_Outline_LineTo_Func) sdf_line_to, /* line_to */
|
|
|
|
(FT_Outline_ConicTo_Func)sdf_conic_to, /* conic_to */
|
|
|
|
(FT_Outline_CubicTo_Func)sdf_cubic_to, /* cubic_to */
|
|
|
|
|
|
|
|
0, /* shift */
|
|
|
|
0 /* delta */
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
/* Decompose `outline` and put it into the `shape` structure. */
|
|
|
|
static FT_Error
|
|
|
|
sdf_outline_decompose( FT_Outline* outline,
|
|
|
|
SDF_Shape* shape )
|
|
|
|
{
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !outline || !shape )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
error = FT_Outline_Decompose( outline,
|
|
|
|
&sdf_decompose_funcs,
|
|
|
|
(void*)shape );
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2020-08-18 06:44:20 +02:00
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* utility functions
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Return the control box of a edge. The control box is a rectangle */
|
|
|
|
/* in which all the control points can fit tightly. */
|
|
|
|
static FT_CBox
|
|
|
|
get_control_box( SDF_Edge edge )
|
|
|
|
{
|
|
|
|
FT_CBox cbox;
|
|
|
|
FT_Bool is_set = 0;
|
|
|
|
|
|
|
|
|
|
|
|
switch ( edge.edge_type )
|
|
|
|
{
|
|
|
|
case SDF_EDGE_CUBIC:
|
|
|
|
cbox.xMin = edge.control_b.x;
|
|
|
|
cbox.xMax = edge.control_b.x;
|
|
|
|
cbox.yMin = edge.control_b.y;
|
|
|
|
cbox.yMax = edge.control_b.y;
|
|
|
|
|
|
|
|
is_set = 1;
|
|
|
|
/* fall through */
|
|
|
|
|
|
|
|
case SDF_EDGE_CONIC:
|
|
|
|
if ( is_set )
|
|
|
|
{
|
|
|
|
cbox.xMin = edge.control_a.x < cbox.xMin
|
|
|
|
? edge.control_a.x
|
|
|
|
: cbox.xMin;
|
|
|
|
cbox.xMax = edge.control_a.x > cbox.xMax
|
|
|
|
? edge.control_a.x
|
|
|
|
: cbox.xMax;
|
|
|
|
|
|
|
|
cbox.yMin = edge.control_a.y < cbox.yMin
|
|
|
|
? edge.control_a.y
|
|
|
|
: cbox.yMin;
|
|
|
|
cbox.yMax = edge.control_a.y > cbox.yMax
|
|
|
|
? edge.control_a.y
|
|
|
|
: cbox.yMax;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cbox.xMin = edge.control_a.x;
|
|
|
|
cbox.xMax = edge.control_a.x;
|
|
|
|
cbox.yMin = edge.control_a.y;
|
|
|
|
cbox.yMax = edge.control_a.y;
|
|
|
|
|
|
|
|
is_set = 1;
|
|
|
|
}
|
|
|
|
/* fall through */
|
|
|
|
|
|
|
|
case SDF_EDGE_LINE:
|
|
|
|
if ( is_set )
|
|
|
|
{
|
|
|
|
cbox.xMin = edge.start_pos.x < cbox.xMin
|
|
|
|
? edge.start_pos.x
|
|
|
|
: cbox.xMin;
|
|
|
|
cbox.xMax = edge.start_pos.x > cbox.xMax
|
|
|
|
? edge.start_pos.x
|
|
|
|
: cbox.xMax;
|
|
|
|
|
|
|
|
cbox.yMin = edge.start_pos.y < cbox.yMin
|
|
|
|
? edge.start_pos.y
|
|
|
|
: cbox.yMin;
|
|
|
|
cbox.yMax = edge.start_pos.y > cbox.yMax
|
|
|
|
? edge.start_pos.y
|
|
|
|
: cbox.yMax;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cbox.xMin = edge.start_pos.x;
|
|
|
|
cbox.xMax = edge.start_pos.x;
|
|
|
|
cbox.yMin = edge.start_pos.y;
|
|
|
|
cbox.yMax = edge.start_pos.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
cbox.xMin = edge.end_pos.x < cbox.xMin
|
|
|
|
? edge.end_pos.x
|
|
|
|
: cbox.xMin;
|
|
|
|
cbox.xMax = edge.end_pos.x > cbox.xMax
|
|
|
|
? edge.end_pos.x
|
|
|
|
: cbox.xMax;
|
|
|
|
|
|
|
|
cbox.yMin = edge.end_pos.y < cbox.yMin
|
|
|
|
? edge.end_pos.y
|
|
|
|
: cbox.yMin;
|
|
|
|
cbox.yMax = edge.end_pos.y > cbox.yMax
|
|
|
|
? edge.end_pos.y
|
|
|
|
: cbox.yMax;
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return cbox;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Return orientation of a single contour. */
|
|
|
|
/* Note that the orientation is independent of the fill rule! */
|
|
|
|
/* So, for TTF a clockwise-oriented contour has to be filled */
|
|
|
|
/* and the opposite for OTF fonts. */
|
|
|
|
static SDF_Contour_Orientation
|
|
|
|
get_contour_orientation ( SDF_Contour* contour )
|
|
|
|
{
|
|
|
|
SDF_Edge* head = NULL;
|
|
|
|
FT_26D6 area = 0;
|
|
|
|
|
|
|
|
|
|
|
|
/* return none if invalid parameters */
|
|
|
|
if ( !contour || !contour->edges )
|
|
|
|
return SDF_ORIENTATION_NONE;
|
|
|
|
|
|
|
|
head = contour->edges;
|
|
|
|
|
|
|
|
/* Calculate the area of the control box for all edges. */
|
|
|
|
while ( head )
|
|
|
|
{
|
|
|
|
switch ( head->edge_type )
|
|
|
|
{
|
|
|
|
case SDF_EDGE_LINE:
|
|
|
|
area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ),
|
|
|
|
( head->end_pos.y + head->start_pos.y ) );
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SDF_EDGE_CONIC:
|
|
|
|
area += MUL_26D6( head->control_a.x - head->start_pos.x,
|
|
|
|
head->control_a.y + head->start_pos.y );
|
|
|
|
area += MUL_26D6( head->end_pos.x - head->control_a.x,
|
|
|
|
head->end_pos.y + head->control_a.y );
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SDF_EDGE_CUBIC:
|
|
|
|
area += MUL_26D6( head->control_a.x - head->start_pos.x,
|
|
|
|
head->control_a.y + head->start_pos.y );
|
|
|
|
area += MUL_26D6( head->control_b.x - head->control_a.x,
|
|
|
|
head->control_b.y + head->control_a.y );
|
|
|
|
area += MUL_26D6( head->end_pos.x - head->control_b.x,
|
|
|
|
head->end_pos.y + head->control_b.y );
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return SDF_ORIENTATION_NONE;
|
|
|
|
}
|
|
|
|
|
|
|
|
head = head->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clockwise contours cover a positive area, and anti-clockwise */
|
|
|
|
/* contours cover a negative area. */
|
|
|
|
if ( area > 0 )
|
|
|
|
return SDF_ORIENTATION_CW;
|
|
|
|
else
|
|
|
|
return SDF_ORIENTATION_ACW;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* This function is exactly the same as the one */
|
|
|
|
/* in the smooth renderer. It splits a conic */
|
|
|
|
/* into two conics exactly half way at t = 0.5. */
|
|
|
|
static void
|
|
|
|
split_conic( FT_26D6_Vec* base )
|
|
|
|
{
|
|
|
|
FT_26D6 a, b;
|
|
|
|
|
|
|
|
|
|
|
|
base[4].x = base[2].x;
|
|
|
|
a = base[0].x + base[1].x;
|
|
|
|
b = base[1].x + base[2].x;
|
|
|
|
base[3].x = b / 2;
|
|
|
|
base[2].x = ( a + b ) / 4;
|
|
|
|
base[1].x = a / 2;
|
|
|
|
|
|
|
|
base[4].y = base[2].y;
|
|
|
|
a = base[0].y + base[1].y;
|
|
|
|
b = base[1].y + base[2].y;
|
|
|
|
base[3].y = b / 2;
|
|
|
|
base[2].y = ( a + b ) / 4;
|
|
|
|
base[1].y = a / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* This function is exactly the same as the one */
|
|
|
|
/* in the smooth renderer. It splits a cubic */
|
|
|
|
/* into two cubics exactly half way at t = 0.5. */
|
|
|
|
static void
|
|
|
|
split_cubic( FT_26D6_Vec* base )
|
|
|
|
{
|
|
|
|
FT_26D6 a, b, c;
|
|
|
|
|
|
|
|
|
|
|
|
base[6].x = base[3].x;
|
|
|
|
a = base[0].x + base[1].x;
|
|
|
|
b = base[1].x + base[2].x;
|
|
|
|
c = base[2].x + base[3].x;
|
|
|
|
base[5].x = c / 2;
|
|
|
|
c += b;
|
|
|
|
base[4].x = c / 4;
|
|
|
|
base[1].x = a / 2;
|
|
|
|
a += b;
|
|
|
|
base[2].x = a / 4;
|
|
|
|
base[3].x = ( a + c ) / 8;
|
|
|
|
|
|
|
|
base[6].y = base[3].y;
|
|
|
|
a = base[0].y + base[1].y;
|
|
|
|
b = base[1].y + base[2].y;
|
|
|
|
c = base[2].y + base[3].y;
|
|
|
|
base[5].y = c / 2;
|
|
|
|
c += b;
|
|
|
|
base[4].y = c / 4;
|
|
|
|
base[1].y = a / 2;
|
|
|
|
a += b;
|
|
|
|
base[2].y = a / 4;
|
|
|
|
base[3].y = ( a + c ) / 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Split a conic Bezier curve into a number of lines */
|
|
|
|
/* and add them to `out'. */
|
|
|
|
/* */
|
|
|
|
/* This function uses recursion; we thus need */
|
|
|
|
/* parameter `max_splits' for stopping. */
|
|
|
|
static FT_Error
|
|
|
|
split_sdf_conic( FT_Memory memory,
|
|
|
|
FT_26D6_Vec* control_points,
|
|
|
|
FT_Int max_splits,
|
|
|
|
SDF_Edge** out )
|
|
|
|
{
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
FT_26D6_Vec cpos[5];
|
|
|
|
SDF_Edge* left,* right;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !memory || !out )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* split conic outline */
|
|
|
|
cpos[0] = control_points[0];
|
|
|
|
cpos[1] = control_points[1];
|
|
|
|
cpos[2] = control_points[2];
|
|
|
|
|
|
|
|
split_conic( cpos );
|
|
|
|
|
|
|
|
/* If max number of splits is done */
|
|
|
|
/* then stop and add the lines to */
|
|
|
|
/* the list. */
|
|
|
|
if ( max_splits <= 2 )
|
|
|
|
goto Append;
|
|
|
|
|
|
|
|
/* Otherwise keep splitting. */
|
|
|
|
FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) );
|
|
|
|
FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) );
|
|
|
|
|
|
|
|
/* [NOTE]: This is not an efficient way of */
|
|
|
|
/* splitting the curve. Check the deviation */
|
|
|
|
/* instead and stop if the deviation is less */
|
|
|
|
/* than a pixel. */
|
|
|
|
|
|
|
|
goto Exit;
|
|
|
|
|
|
|
|
Append:
|
|
|
|
/* Do allocation and add the lines to the list. */
|
|
|
|
|
|
|
|
FT_CALL( sdf_edge_new( memory, &left ) );
|
|
|
|
FT_CALL( sdf_edge_new( memory, &right ) );
|
|
|
|
|
|
|
|
left->start_pos = cpos[0];
|
|
|
|
left->end_pos = cpos[2];
|
|
|
|
left->edge_type = SDF_EDGE_LINE;
|
|
|
|
|
|
|
|
right->start_pos = cpos[2];
|
|
|
|
right->end_pos = cpos[4];
|
|
|
|
right->edge_type = SDF_EDGE_LINE;
|
|
|
|
|
|
|
|
left->next = right;
|
|
|
|
right->next = (*out);
|
|
|
|
*out = left;
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Split a cubic Bezier curve into a number of lines */
|
|
|
|
/* and add them to `out`. */
|
|
|
|
/* */
|
|
|
|
/* This function uses recursion; we thus need */
|
|
|
|
/* parameter `max_splits' for stopping. */
|
|
|
|
static FT_Error
|
|
|
|
split_sdf_cubic( FT_Memory memory,
|
|
|
|
FT_26D6_Vec* control_points,
|
|
|
|
FT_Int max_splits,
|
|
|
|
SDF_Edge** out )
|
|
|
|
{
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
FT_26D6_Vec cpos[7];
|
|
|
|
SDF_Edge* left,* right;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !memory || !out )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* split the conic */
|
|
|
|
cpos[0] = control_points[0];
|
|
|
|
cpos[1] = control_points[1];
|
|
|
|
cpos[2] = control_points[2];
|
|
|
|
cpos[3] = control_points[3];
|
|
|
|
|
|
|
|
split_cubic( cpos );
|
|
|
|
|
|
|
|
/* If max number of splits is done */
|
|
|
|
/* then stop and add the lines to */
|
|
|
|
/* the list. */
|
|
|
|
if ( max_splits <= 2 )
|
|
|
|
goto Append;
|
|
|
|
|
|
|
|
/* Otherwise keep splitting. */
|
|
|
|
FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) );
|
|
|
|
FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) );
|
|
|
|
|
|
|
|
/* [NOTE]: This is not an efficient way of */
|
|
|
|
/* splitting the curve. Check the deviation */
|
|
|
|
/* instead and stop if the deviation is less */
|
|
|
|
/* than a pixel. */
|
|
|
|
|
|
|
|
goto Exit;
|
|
|
|
|
|
|
|
Append:
|
|
|
|
/* Do allocation and add the lines to the list. */
|
|
|
|
|
|
|
|
FT_CALL( sdf_edge_new( memory, &left) );
|
|
|
|
FT_CALL( sdf_edge_new( memory, &right) );
|
|
|
|
|
|
|
|
left->start_pos = cpos[0];
|
|
|
|
left->end_pos = cpos[3];
|
|
|
|
left->edge_type = SDF_EDGE_LINE;
|
|
|
|
|
|
|
|
right->start_pos = cpos[3];
|
|
|
|
right->end_pos = cpos[6];
|
|
|
|
right->edge_type = SDF_EDGE_LINE;
|
|
|
|
|
|
|
|
left->next = right;
|
|
|
|
right->next = (*out);
|
|
|
|
*out = left;
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Subdivide an entire shape into line segments */
|
|
|
|
/* such that it doesn't look visually different */
|
|
|
|
/* from the original curve. */
|
|
|
|
static FT_Error
|
|
|
|
split_sdf_shape( SDF_Shape* shape )
|
|
|
|
{
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
FT_Memory memory;
|
|
|
|
|
|
|
|
SDF_Contour* contours;
|
|
|
|
SDF_Contour* new_contours = NULL;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !shape || !shape->memory )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
contours = shape->contours;
|
|
|
|
memory = shape->memory;
|
|
|
|
|
|
|
|
/* for each contour */
|
|
|
|
while ( contours )
|
|
|
|
{
|
|
|
|
SDF_Edge* edges = contours->edges;
|
|
|
|
SDF_Edge* new_edges = NULL;
|
|
|
|
|
|
|
|
SDF_Contour* tempc;
|
|
|
|
|
|
|
|
|
|
|
|
/* for each edge */
|
|
|
|
while ( edges )
|
|
|
|
{
|
|
|
|
SDF_Edge* edge = edges;
|
|
|
|
SDF_Edge* temp;
|
|
|
|
|
|
|
|
switch ( edge->edge_type )
|
|
|
|
{
|
|
|
|
case SDF_EDGE_LINE:
|
|
|
|
/* Just create a duplicate edge in case */
|
|
|
|
/* it is a line. We can use the same edge. */
|
|
|
|
FT_CALL( sdf_edge_new( memory, &temp ) );
|
|
|
|
|
|
|
|
ft_memcpy( temp, edge, sizeof ( *edge ) );
|
|
|
|
|
|
|
|
temp->next = new_edges;
|
|
|
|
new_edges = temp;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SDF_EDGE_CONIC:
|
|
|
|
/* Subdivide the curve and add it to the list. */
|
|
|
|
{
|
|
|
|
FT_26D6_Vec ctrls[3];
|
|
|
|
|
|
|
|
|
|
|
|
ctrls[0] = edge->start_pos;
|
|
|
|
ctrls[1] = edge->control_a;
|
|
|
|
ctrls[2] = edge->end_pos;
|
|
|
|
|
|
|
|
error = split_sdf_conic( memory, ctrls, 32, &new_edges );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SDF_EDGE_CUBIC:
|
|
|
|
/* Subdivide the curve and add it to the list. */
|
|
|
|
{
|
|
|
|
FT_26D6_Vec ctrls[4];
|
|
|
|
|
|
|
|
|
|
|
|
ctrls[0] = edge->start_pos;
|
|
|
|
ctrls[1] = edge->control_a;
|
|
|
|
ctrls[2] = edge->control_b;
|
|
|
|
ctrls[3] = edge->end_pos;
|
|
|
|
|
|
|
|
error = split_sdf_cubic( memory, ctrls, 32, &new_edges );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
edges = edges->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* add to the contours list */
|
|
|
|
FT_CALL( sdf_contour_new( memory, &tempc ) );
|
|
|
|
|
|
|
|
tempc->next = new_contours;
|
|
|
|
tempc->edges = new_edges;
|
|
|
|
new_contours = tempc;
|
|
|
|
new_edges = NULL;
|
|
|
|
|
|
|
|
/* deallocate the contour */
|
|
|
|
tempc = contours;
|
|
|
|
contours = contours->next;
|
|
|
|
|
|
|
|
sdf_contour_done( memory, &tempc );
|
|
|
|
}
|
|
|
|
|
|
|
|
shape->contours = new_contours;
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2020-08-18 06:47:46 +02:00
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* math functions
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if !USE_NEWTON_FOR_CONIC
|
|
|
|
|
|
|
|
/* [NOTE]: All the functions below down until rasterizer */
|
|
|
|
/* can be avoided if we decide to subdivide the */
|
|
|
|
/* curve into lines. */
|
|
|
|
|
|
|
|
/* This function uses Newton's iteration to find */
|
|
|
|
/* the cube root of a fixed-point integer. */
|
|
|
|
static FT_16D16
|
|
|
|
cube_root( FT_16D16 val )
|
|
|
|
{
|
|
|
|
/* [IMPORTANT]: This function is not good as it may */
|
|
|
|
/* not break, so use a lookup table instead. Or we */
|
|
|
|
/* can use an algorithm similar to `square_root`. */
|
|
|
|
|
|
|
|
FT_Int v, g, c;
|
|
|
|
|
|
|
|
|
|
|
|
if ( val == 0 ||
|
|
|
|
val == -FT_INT_16D16( 1 ) ||
|
|
|
|
val == FT_INT_16D16( 1 ) )
|
|
|
|
return val;
|
|
|
|
|
|
|
|
v = val < 0 ? -val : val;
|
|
|
|
g = square_root( v );
|
|
|
|
c = 0;
|
|
|
|
|
|
|
|
while ( 1 )
|
|
|
|
{
|
|
|
|
c = FT_MulFix( FT_MulFix( g, g ), g ) - v;
|
|
|
|
c = FT_DivFix( c, 3 * FT_MulFix( g, g ) );
|
|
|
|
|
|
|
|
g -= c;
|
|
|
|
|
|
|
|
if ( ( c < 0 ? -c : c ) < 30 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return val < 0 ? -g : g;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Calculate the perpendicular by using '1 - base^2'. */
|
|
|
|
/* Then use arctan to compute the angle. */
|
|
|
|
static FT_16D16
|
|
|
|
arc_cos( FT_16D16 val )
|
|
|
|
{
|
|
|
|
FT_16D16 p;
|
|
|
|
FT_16D16 b = val;
|
|
|
|
FT_16D16 one = FT_INT_16D16( 1 );
|
|
|
|
|
|
|
|
|
|
|
|
if ( b > one )
|
|
|
|
b = one;
|
|
|
|
if ( b < -one )
|
|
|
|
b = -one;
|
|
|
|
|
|
|
|
p = one - FT_MulFix( b, b );
|
|
|
|
p = square_root( p );
|
|
|
|
|
|
|
|
return FT_Atan2( b, p );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Compute roots of a quadratic polynomial, assign them to `out`, */
|
|
|
|
/* and return number of real roots. */
|
|
|
|
/* */
|
|
|
|
/* The procedure can be found at */
|
|
|
|
/* */
|
|
|
|
/* https://mathworld.wolfram.com/QuadraticFormula.html */
|
|
|
|
static FT_UShort
|
|
|
|
solve_quadratic_equation( FT_26D6 a,
|
|
|
|
FT_26D6 b,
|
|
|
|
FT_26D6 c,
|
|
|
|
FT_16D16 out[2] )
|
|
|
|
{
|
|
|
|
FT_16D16 discriminant = 0;
|
|
|
|
|
|
|
|
|
|
|
|
a = FT_26D6_16D16( a );
|
|
|
|
b = FT_26D6_16D16( b );
|
|
|
|
c = FT_26D6_16D16( c );
|
|
|
|
|
|
|
|
if ( a == 0 )
|
|
|
|
{
|
|
|
|
if ( b == 0 )
|
|
|
|
return 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
out[0] = FT_DivFix( -c, b );
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c );
|
|
|
|
|
|
|
|
if ( discriminant < 0 )
|
|
|
|
return 0;
|
|
|
|
else if ( discriminant == 0 )
|
|
|
|
{
|
|
|
|
out[0] = FT_DivFix( -b, 2 * a );
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
discriminant = square_root( discriminant );
|
|
|
|
|
|
|
|
out[0] = FT_DivFix( -b + discriminant, 2 * a );
|
|
|
|
out[1] = FT_DivFix( -b - discriminant, 2 * a );
|
|
|
|
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Compute roots of a cubic polynomial, assign them to `out`, */
|
|
|
|
/* and return number of real roots. */
|
|
|
|
/* */
|
|
|
|
/* The procedure can be found at */
|
|
|
|
/* */
|
|
|
|
/* https://mathworld.wolfram.com/CubicFormula.html */
|
|
|
|
static FT_UShort
|
|
|
|
solve_cubic_equation( FT_26D6 a,
|
|
|
|
FT_26D6 b,
|
|
|
|
FT_26D6 c,
|
|
|
|
FT_26D6 d,
|
|
|
|
FT_16D16 out[3] )
|
|
|
|
{
|
|
|
|
FT_16D16 q = 0; /* intermediate */
|
|
|
|
FT_16D16 r = 0; /* intermediate */
|
|
|
|
|
|
|
|
FT_16D16 a2 = b; /* x^2 coefficients */
|
|
|
|
FT_16D16 a1 = c; /* x coefficients */
|
|
|
|
FT_16D16 a0 = d; /* constant */
|
|
|
|
|
|
|
|
FT_16D16 q3 = 0;
|
|
|
|
FT_16D16 r2 = 0;
|
|
|
|
FT_16D16 a23 = 0;
|
|
|
|
FT_16D16 a22 = 0;
|
|
|
|
FT_16D16 a1x2 = 0;
|
|
|
|
|
|
|
|
|
|
|
|
/* cutoff value for `a` to be a cubic, otherwise solve quadratic */
|
|
|
|
if ( a == 0 || FT_ABS( a ) < 16 )
|
|
|
|
return solve_quadratic_equation( b, c, d, out );
|
|
|
|
|
|
|
|
if ( d == 0 )
|
|
|
|
{
|
|
|
|
out[0] = 0;
|
|
|
|
|
|
|
|
return solve_quadratic_equation( a, b, c, out + 1 ) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* normalize the coefficients; this also makes them 16.16 */
|
|
|
|
a2 = FT_DivFix( a2, a );
|
|
|
|
a1 = FT_DivFix( a1, a );
|
|
|
|
a0 = FT_DivFix( a0, a );
|
|
|
|
|
|
|
|
/* compute intermediates */
|
|
|
|
a1x2 = FT_MulFix( a1, a2 );
|
|
|
|
a22 = FT_MulFix( a2, a2 );
|
|
|
|
a23 = FT_MulFix( a22, a2 );
|
|
|
|
|
|
|
|
q = ( 3 * a1 - a22 ) / 9;
|
|
|
|
r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54;
|
|
|
|
|
|
|
|
/* [BUG]: `q3` and `r2` still cause underflow. */
|
|
|
|
|
|
|
|
q3 = FT_MulFix( q, q );
|
|
|
|
q3 = FT_MulFix( q3, q );
|
|
|
|
|
|
|
|
r2 = FT_MulFix( r, r );
|
|
|
|
|
|
|
|
if ( q3 < 0 && r2 < -q3 )
|
|
|
|
{
|
|
|
|
FT_16D16 t = 0;
|
|
|
|
|
|
|
|
|
|
|
|
q3 = square_root( -q3 );
|
|
|
|
t = FT_DivFix( r, q3 );
|
|
|
|
|
|
|
|
if ( t > ( 1 << 16 ) )
|
|
|
|
t = ( 1 << 16 );
|
|
|
|
if ( t < -( 1 << 16 ) )
|
|
|
|
t = -( 1 << 16 );
|
|
|
|
|
|
|
|
t = arc_cos( t );
|
|
|
|
a2 /= 3;
|
|
|
|
q = 2 * square_root( -q );
|
|
|
|
|
|
|
|
out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2;
|
|
|
|
out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2;
|
|
|
|
out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2;
|
|
|
|
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
else if ( r2 == -q3 )
|
|
|
|
{
|
|
|
|
FT_16D16 s = 0;
|
|
|
|
|
|
|
|
|
|
|
|
s = cube_root( r );
|
|
|
|
a2 /= -3;
|
|
|
|
|
|
|
|
out[0] = a2 + ( 2 * s );
|
|
|
|
out[1] = a2 - s;
|
|
|
|
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
else
|
|
|
|
{
|
|
|
|
FT_16D16 s = 0;
|
|
|
|
FT_16D16 t = 0;
|
|
|
|
FT_16D16 dis = 0;
|
|
|
|
|
|
|
|
|
|
|
|
if ( q3 == 0 )
|
|
|
|
dis = FT_ABS( r );
|
|
|
|
else
|
|
|
|
dis = square_root( q3 + r2 );
|
|
|
|
|
|
|
|
s = cube_root( r + dis );
|
|
|
|
t = cube_root( r - dis );
|
|
|
|
a2 /= -3;
|
|
|
|
out[0] = ( a2 + ( s + t ) );
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !USE_NEWTON_FOR_CONIC */
|
|
|
|
|
|
|
|
|
2020-08-18 06:58:16 +02:00
|
|
|
/*************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
|
|
/** **/
|
|
|
|
/** RASTERIZER **/
|
|
|
|
/** **/
|
|
|
|
/*************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Function:
|
|
|
|
* resolve_corner
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* At some places on the grid two edges can give opposite directions;
|
|
|
|
* this happens when the closest point is on one of the endpoint. In
|
|
|
|
* that case we need to check the proper sign.
|
|
|
|
*
|
|
|
|
* This can be visualized by an example:
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* x
|
|
|
|
*
|
|
|
|
* o
|
|
|
|
* ^ \
|
|
|
|
* / \
|
|
|
|
* / \
|
|
|
|
* (a) / \ (b)
|
|
|
|
* / \
|
|
|
|
* / \
|
|
|
|
* / v
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* Suppose `x` is the point whose shortest distance from an arbitrary
|
|
|
|
* contour we want to find out. It is clear that `o` is the nearest
|
|
|
|
* point on the contour. Now to determine the sign we do a cross
|
|
|
|
* product of the shortest distance vector and the edge direction, i.e.,
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* => sign = cross(x - o, direction(a))
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* Using the right hand thumb rule we can see that the sign will be
|
|
|
|
* positive.
|
|
|
|
*
|
|
|
|
* If we use `b', however, we have
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* => sign = cross(x - o, direction(b))
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* In this case the sign will be negative. To determine the correct
|
|
|
|
* sign we thus divide the plane in two halves and check which plane the
|
|
|
|
* point lies in.
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* |
|
|
|
|
* x |
|
|
|
|
* |
|
|
|
|
* o
|
|
|
|
* ^|\
|
|
|
|
* / | \
|
|
|
|
* / | \
|
|
|
|
* (a) / | \ (b)
|
|
|
|
* / | \
|
|
|
|
* / \
|
|
|
|
* / v
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* We can see that `x` lies in the plane of `a`, so we take the sign
|
|
|
|
* determined by `a`. This test can be easily done by calculating the
|
|
|
|
* orthogonality and taking the greater one.
|
|
|
|
*
|
|
|
|
* The orthogonality is simply the sinus of the two vectors (i.e.,
|
|
|
|
* x - o) and the corresponding direction. We efficiently pre-compute
|
2020-08-18 14:19:56 +02:00
|
|
|
* the orthogonality with the corresponding `get_min_distance_*`
|
2020-08-18 06:58:16 +02:00
|
|
|
* functions.
|
|
|
|
*
|
|
|
|
* @Input:
|
|
|
|
* sdf1 ::
|
|
|
|
* First signed distance (can be any of `a` or `b`).
|
|
|
|
*
|
|
|
|
* sdf1 ::
|
|
|
|
* Second signed distance (can be any of `a` or `b`).
|
|
|
|
*
|
|
|
|
* @Return:
|
|
|
|
* The correct signed distance, which is computed by using the above
|
|
|
|
* algorithm.
|
|
|
|
*
|
|
|
|
* @Note:
|
|
|
|
* The function does not care about the actual distance, it simply
|
|
|
|
* returns the signed distance which has a larger cross product. As a
|
|
|
|
* consequence, this function should not be used if the two distances
|
|
|
|
* are fairly apart. In that case simply use the signed distance with
|
|
|
|
* a shorter absolute distance.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static SDF_Signed_Distance
|
|
|
|
resolve_corner( SDF_Signed_Distance sdf1,
|
|
|
|
SDF_Signed_Distance sdf2 )
|
|
|
|
{
|
|
|
|
return FT_ABS( sdf1.cross ) > FT_ABS( sdf2.cross ) ? sdf1 : sdf2;
|
|
|
|
}
|
|
|
|
|
2020-08-18 14:19:56 +02:00
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Function:
|
|
|
|
* get_min_distance_line
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Find the shortest distance from the `line` segment to a given `point`
|
|
|
|
* and assign it to `out`. Use it for line segments only.
|
|
|
|
*
|
|
|
|
* @Input:
|
|
|
|
* line ::
|
|
|
|
* The line segment to which the shortest distance is to be computed.
|
|
|
|
*
|
|
|
|
* point ::
|
|
|
|
* Point from which the shortest distance is to be computed.
|
|
|
|
*
|
|
|
|
* @Output:
|
|
|
|
* out ::
|
|
|
|
* Signed distance from `point` to `line`.
|
|
|
|
*
|
|
|
|
* @Return:
|
|
|
|
* FreeType error, 0 means success.
|
|
|
|
*
|
|
|
|
* @Note:
|
|
|
|
* The `line' parameter must have an edge type of `SDF_EDGE_LINE`.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static FT_Error
|
|
|
|
get_min_distance_line( SDF_Edge* line,
|
|
|
|
FT_26D6_Vec point,
|
|
|
|
SDF_Signed_Distance* out )
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* In order to calculate the shortest distance from a point to
|
|
|
|
* a line segment, we do the following. Let's assume that
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* a = start point of the line segment
|
|
|
|
* b = end point of the line segment
|
|
|
|
* p = point from which shortest distance is to be calculated
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (1) Write the parametric equation of the line.
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* point_on_line = a + (b - a) * t (t is the factor)
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (2) Find the projection of point `p` on the line. The projection
|
|
|
|
* will be perpendicular to the line, which allows us to get the
|
|
|
|
* solution by making the dot product zero.
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* (point_on_line - a) . (p - point_on_line) = 0
|
|
|
|
*
|
|
|
|
* (point_on_line)
|
|
|
|
* (a) x-------o----------------x (b)
|
|
|
|
* |_|
|
|
|
|
* |
|
|
|
|
* |
|
|
|
|
* (p)
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (3) Simplification of the above equation yields the factor of
|
|
|
|
* `point_on_line`:
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* t = ((p - a) . (b - a)) / |b - a|^2
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (4) We clamp factor `t` between [0.0f, 1.0f] because `point_on_line`
|
|
|
|
* can be outside of the line segment:
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* (point_on_line)
|
|
|
|
* (a) x------------------------x (b) -----o---
|
|
|
|
* |_|
|
|
|
|
* |
|
|
|
|
* |
|
|
|
|
* (p)
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (5) Finally, the distance we are interested in is
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* |point_on_line - p|
|
|
|
|
* ```
|
|
|
|
*/
|
|
|
|
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
|
|
|
|
FT_Vector a; /* start position */
|
|
|
|
FT_Vector b; /* end position */
|
|
|
|
FT_Vector p; /* current point */
|
|
|
|
|
|
|
|
FT_26D6_Vec line_segment; /* `b` - `a` */
|
|
|
|
FT_26D6_Vec p_sub_a; /* `p` - `a` */
|
|
|
|
|
|
|
|
FT_26D6 sq_line_length; /* squared length of `line_segment` */
|
|
|
|
FT_16D16 factor; /* factor of the nearest point */
|
|
|
|
FT_26D6 cross; /* used to determine sign */
|
|
|
|
|
|
|
|
FT_16D16_Vec nearest_point; /* `point_on_line` */
|
|
|
|
FT_16D16_Vec nearest_vector; /* `p` - `nearest_point` */
|
|
|
|
|
|
|
|
|
|
|
|
if ( !line || !out )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( line->edge_type != SDF_EDGE_LINE )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
a = line->start_pos;
|
|
|
|
b = line->end_pos;
|
|
|
|
p = point;
|
|
|
|
|
|
|
|
line_segment.x = b.x - a.x;
|
|
|
|
line_segment.y = b.y - a.y;
|
|
|
|
|
|
|
|
p_sub_a.x = p.x - a.x;
|
|
|
|
p_sub_a.y = p.y - a.y;
|
|
|
|
|
|
|
|
sq_line_length = ( line_segment.x * line_segment.x ) / 64 +
|
|
|
|
( line_segment.y * line_segment.y ) / 64;
|
|
|
|
|
|
|
|
/* currently factor is 26.6 */
|
|
|
|
factor = ( p_sub_a.x * line_segment.x ) / 64 +
|
|
|
|
( p_sub_a.y * line_segment.y ) / 64;
|
|
|
|
|
|
|
|
/* now factor is 16.16 */
|
|
|
|
factor = FT_DivFix( factor, sq_line_length );
|
|
|
|
|
|
|
|
/* clamp the factor between 0.0 and 1.0 in fixed point */
|
|
|
|
if ( factor > FT_INT_16D16( 1 ) )
|
|
|
|
factor = FT_INT_16D16( 1 );
|
|
|
|
if ( factor < 0 )
|
|
|
|
factor = 0;
|
|
|
|
|
|
|
|
nearest_point.x = FT_MulFix( FT_26D6_16D16( line_segment.x ),
|
|
|
|
factor );
|
|
|
|
nearest_point.y = FT_MulFix( FT_26D6_16D16( line_segment.y ),
|
|
|
|
factor );
|
|
|
|
|
|
|
|
nearest_point.x = FT_26D6_16D16( a.x ) + nearest_point.x;
|
|
|
|
nearest_point.y = FT_26D6_16D16( a.y ) + nearest_point.y;
|
|
|
|
|
|
|
|
nearest_vector.x = nearest_point.x - FT_26D6_16D16( p.x );
|
|
|
|
nearest_vector.y = nearest_point.y - FT_26D6_16D16( p.y );
|
|
|
|
|
|
|
|
cross = FT_MulFix( nearest_vector.x, line_segment.y ) -
|
|
|
|
FT_MulFix( nearest_vector.y, line_segment.x );
|
|
|
|
|
|
|
|
/* assign the output */
|
|
|
|
out->sign = cross < 0 ? 1 : -1;
|
|
|
|
out->distance = VECTOR_LENGTH_16D16( nearest_vector );
|
|
|
|
|
|
|
|
/* Instead of finding `cross` for checking corner we */
|
|
|
|
/* directly set it here. This is more efficient */
|
|
|
|
/* because if the distance is perpendicular we can */
|
|
|
|
/* directly set it to 1. */
|
|
|
|
if ( factor != 0 && factor != FT_INT_16D16( 1 ) )
|
|
|
|
out->cross = FT_INT_16D16( 1 );
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* [OPTIMIZATION]: Pre-compute this direction. */
|
|
|
|
/* If not perpendicular then compute `cross`. */
|
|
|
|
FT_Vector_NormLen( &line_segment );
|
|
|
|
FT_Vector_NormLen( &nearest_vector );
|
|
|
|
|
|
|
|
out->cross = FT_MulFix( line_segment.x, nearest_vector.y ) -
|
|
|
|
FT_MulFix( line_segment.y, nearest_vector.x );
|
|
|
|
}
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Function:
|
|
|
|
* get_min_distance_conic
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Find the shortest distance from the `conic` Bezier curve to a given
|
|
|
|
* `point` and assign it to `out`. Use it for conic/quadratic curves
|
|
|
|
* only.
|
|
|
|
*
|
|
|
|
* @Input:
|
|
|
|
* conic ::
|
|
|
|
* The conic Bezier curve to which the shortest distance is to be
|
|
|
|
* computed.
|
|
|
|
*
|
|
|
|
* point ::
|
|
|
|
* Point from which the shortest distance is to be computed.
|
|
|
|
*
|
|
|
|
* @Output:
|
|
|
|
* out ::
|
|
|
|
* Signed distance from `point` to `conic`.
|
|
|
|
*
|
|
|
|
* @Return:
|
|
|
|
* FreeType error, 0 means success.
|
|
|
|
*
|
|
|
|
* @Note:
|
|
|
|
* The `conic` parameter must have an edge type of `SDF_EDGE_CONIC`.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if !USE_NEWTON_FOR_CONIC
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The function uses an analytical method to find the shortest distance
|
|
|
|
* which is faster than the Newton-Raphson method, but has underflows at
|
|
|
|
* the moment. Use Newton's method if you can see artifacts in the SDF.
|
|
|
|
*/
|
|
|
|
static FT_Error
|
|
|
|
get_min_distance_conic( SDF_Edge* conic,
|
|
|
|
FT_26D6_Vec point,
|
|
|
|
SDF_Signed_Distance* out )
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The procedure to find the shortest distance from a point to a
|
|
|
|
* quadratic Bezier curve is similar to the line segment algorithm. The
|
|
|
|
* shortest distance is perpendicular to the Bezier curve; the only
|
|
|
|
* difference from line is that there can be more than one
|
|
|
|
* perpendicular, and we also have to check the endpoints, because the
|
|
|
|
* perpendicular may not be the shortest.
|
|
|
|
*
|
|
|
|
* Let's assume that
|
|
|
|
* ```
|
|
|
|
* p0 = first endpoint
|
|
|
|
* p1 = control point
|
|
|
|
* p2 = second endpoint
|
|
|
|
* p = point from which shortest distance is to be calculated
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (1) The equation of a quadratic Bezier curve can be written as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* with `t` a factor in the range [0.0f, 1.0f]. This equation can
|
|
|
|
* be rewritten as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* With
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* A = p0 - 2p1 + p2
|
|
|
|
* B = p1 - p0
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* we have
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B(t) = t^2 * A + 2t * B + p0
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (2) The derivative of the last equation above is
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B'(t) = 2 *(tA + B)
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (3) To find the shortest distance from `p` to `B(t)` we find the
|
|
|
|
* point on the curve at which the shortest distance vector (i.e.,
|
|
|
|
* `B(t) - p`) and the direction (i.e., `B'(t)`) make 90 degrees.
|
|
|
|
* In other words, we make the dot product zero.
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* (B(t) - p) . (B'(t)) = 0
|
|
|
|
* (t^2 * A + 2t * B + p0 - p) . (2 * (tA + B)) = 0
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* After simplifying we get a cubic equation
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* at^3 + bt^2 + ct + d = 0
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* with
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* a = A.A
|
|
|
|
* b = 3A.B
|
|
|
|
* c = 2B.B + A.p0 - A.p
|
|
|
|
* d = p0.B - p.B
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (4) Now the roots of the equation can be computed using 'Cardano's
|
|
|
|
* Cubic formula'; we clamp the roots in the range [0.0f, 1.0f].
|
|
|
|
*
|
|
|
|
* [note]: `B` and `B(t)` are different in the above equations.
|
|
|
|
*/
|
|
|
|
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
|
|
|
|
FT_26D6_Vec aA, bB; /* A, B in the above comment */
|
|
|
|
FT_26D6_Vec nearest_point; /* point on curve nearest to `point` */
|
|
|
|
FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
|
|
|
|
|
|
|
|
FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
|
|
|
|
FT_26D6_Vec p; /* `point` to which shortest distance */
|
|
|
|
|
|
|
|
FT_26D6 a, b, c, d; /* cubic coefficients */
|
|
|
|
|
|
|
|
FT_16D16 roots[3] = { 0, 0, 0 }; /* real roots of the cubic eq. */
|
|
|
|
FT_16D16 min_factor; /* factor at `nearest_point` */
|
|
|
|
FT_16D16 cross; /* to determine the sign */
|
|
|
|
FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
|
|
|
|
|
|
|
|
FT_UShort num_roots; /* number of real roots of cubic */
|
|
|
|
FT_UShort i;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !conic || !out )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( conic->edge_type != SDF_EDGE_CONIC )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
p0 = conic->start_pos;
|
|
|
|
p1 = conic->control_a;
|
|
|
|
p2 = conic->end_pos;
|
|
|
|
p = point;
|
|
|
|
|
|
|
|
/* compute substitution coefficients */
|
|
|
|
aA.x = p0.x - 2 * p1.x + p2.x;
|
|
|
|
aA.y = p0.y - 2 * p1.y + p2.y;
|
|
|
|
|
|
|
|
bB.x = p1.x - p0.x;
|
|
|
|
bB.y = p1.y - p0.y;
|
|
|
|
|
|
|
|
/* compute cubic coefficients */
|
|
|
|
a = VEC_26D6_DOT( aA, aA );
|
|
|
|
|
|
|
|
b = 3 * VEC_26D6_DOT( aA, bB );
|
|
|
|
|
|
|
|
c = 2 * VEC_26D6_DOT( bB, bB ) +
|
|
|
|
VEC_26D6_DOT( aA, p0 ) -
|
|
|
|
VEC_26D6_DOT( aA, p );
|
|
|
|
|
|
|
|
d = VEC_26D6_DOT( p0, bB ) -
|
|
|
|
VEC_26D6_DOT( p, bB );
|
|
|
|
|
|
|
|
/* find the roots */
|
|
|
|
num_roots = solve_cubic_equation( a, b, c, d, roots );
|
|
|
|
|
|
|
|
if ( num_roots == 0 )
|
|
|
|
{
|
|
|
|
roots[0] = 0;
|
|
|
|
roots[1] = FT_INT_16D16( 1 );
|
|
|
|
num_roots = 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* [OPTIMIZATION]: Check the roots, clamp them and discard */
|
|
|
|
/* duplicate roots. */
|
|
|
|
|
|
|
|
/* convert these values to 16.16 for further computation */
|
|
|
|
aA.x = FT_26D6_16D16( aA.x );
|
|
|
|
aA.y = FT_26D6_16D16( aA.y );
|
|
|
|
|
|
|
|
bB.x = FT_26D6_16D16( bB.x );
|
|
|
|
bB.y = FT_26D6_16D16( bB.y );
|
|
|
|
|
|
|
|
p0.x = FT_26D6_16D16( p0.x );
|
|
|
|
p0.y = FT_26D6_16D16( p0.y );
|
|
|
|
|
|
|
|
p.x = FT_26D6_16D16( p.x );
|
|
|
|
p.y = FT_26D6_16D16( p.y );
|
|
|
|
|
|
|
|
for ( i = 0; i < num_roots; i++ )
|
|
|
|
{
|
|
|
|
FT_16D16 t = roots[i];
|
|
|
|
FT_16D16 t2 = 0;
|
|
|
|
FT_16D16 dist = 0;
|
|
|
|
|
|
|
|
FT_16D16_Vec curve_point;
|
|
|
|
FT_16D16_Vec dist_vector;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ideally we should discard the roots which are outside the range
|
|
|
|
* [0.0, 1.0] and check the endpoints of the Bezier curve, but Behdad
|
|
|
|
* Esfahbod proved the following lemma.
|
|
|
|
*
|
|
|
|
* Lemma:
|
|
|
|
*
|
|
|
|
* (1) If the closest point on the curve [0, 1] is to the endpoint at
|
|
|
|
* `t` = 1 and the cubic has no real roots at `t` = 1 then the
|
|
|
|
* cubic must have a real root at some `t` > 1.
|
|
|
|
*
|
|
|
|
* (2) Similarly, if the closest point on the curve [0, 1] is to the
|
|
|
|
* endpoint at `t` = 0 and the cubic has no real roots at `t` = 0
|
|
|
|
* then the cubic must have a real root at some `t` < 0.
|
|
|
|
*
|
|
|
|
* Now because of this lemma we only need to clamp the roots and that
|
|
|
|
* will take care of the endpoints.
|
|
|
|
*
|
|
|
|
* For more details see
|
|
|
|
*
|
|
|
|
* https://lists.nongnu.org/archive/html/freetype-devel/2020-06/msg00147.html
|
|
|
|
*/
|
|
|
|
|
|
|
|
if ( t < 0 )
|
|
|
|
t = 0;
|
|
|
|
if ( t > FT_INT_16D16( 1 ) )
|
|
|
|
t = FT_INT_16D16( 1 );
|
|
|
|
|
|
|
|
t2 = FT_MulFix( t, t );
|
|
|
|
|
|
|
|
/* B(t) = t^2 * A + 2t * B + p0 - p */
|
|
|
|
curve_point.x = FT_MulFix( aA.x, t2 ) +
|
|
|
|
2 * FT_MulFix( bB.x, t ) + p0.x;
|
|
|
|
curve_point.y = FT_MulFix( aA.y, t2 ) +
|
|
|
|
2 * FT_MulFix( bB.y, t ) + p0.y;
|
|
|
|
|
|
|
|
/* `curve_point` - `p` */
|
|
|
|
dist_vector.x = curve_point.x - p.x;
|
|
|
|
dist_vector.y = curve_point.y - p.y;
|
|
|
|
|
|
|
|
dist = VECTOR_LENGTH_16D16( dist_vector );
|
|
|
|
|
|
|
|
if ( dist < min )
|
|
|
|
{
|
|
|
|
min = dist;
|
|
|
|
nearest_point = curve_point;
|
|
|
|
min_factor = t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* B'(t) = 2 * (tA + B) */
|
|
|
|
direction.x = 2 * FT_MulFix( aA.x, min_factor ) + 2 * bB.x;
|
|
|
|
direction.y = 2 * FT_MulFix( aA.y, min_factor ) + 2 * bB.y;
|
|
|
|
|
|
|
|
/* determine the sign */
|
|
|
|
cross = FT_MulFix( nearest_point.x - p.x, direction.y ) -
|
|
|
|
FT_MulFix( nearest_point.y - p.y, direction.x );
|
|
|
|
|
|
|
|
/* assign the values */
|
|
|
|
out->distance = min;
|
|
|
|
out->sign = cross < 0 ? 1 : -1;
|
|
|
|
|
|
|
|
if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
|
|
|
|
out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* convert to nearest vector */
|
|
|
|
nearest_point.x -= FT_26D6_16D16( p.x );
|
|
|
|
nearest_point.y -= FT_26D6_16D16( p.y );
|
|
|
|
|
|
|
|
/* compute `cross` if not perpendicular */
|
|
|
|
FT_Vector_NormLen( &direction );
|
|
|
|
FT_Vector_NormLen( &nearest_point );
|
|
|
|
|
|
|
|
out->cross = FT_MulFix( direction.x, nearest_point.y ) -
|
|
|
|
FT_MulFix( direction.y, nearest_point.x );
|
|
|
|
}
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* USE_NEWTON_FOR_CONIC */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The function uses Newton's approximation to find the shortest distance,
|
|
|
|
* which is a bit slower than the analytical method but doesn't cause
|
|
|
|
* underflow.
|
|
|
|
*/
|
|
|
|
static FT_Error
|
|
|
|
get_min_distance_conic( SDF_Edge* conic,
|
|
|
|
FT_26D6_Vec point,
|
|
|
|
SDF_Signed_Distance* out )
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* This method uses Newton-Raphson's approximation to find the shortest
|
|
|
|
* distance from a point to a conic curve. It does not involve solving
|
|
|
|
* any cubic equation, that is why there is no risk of underflow.
|
|
|
|
*
|
|
|
|
* Let's assume that
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* p0 = first endpoint
|
|
|
|
* p1 = control point
|
|
|
|
* p3 = second endpoint
|
|
|
|
* p = point from which shortest distance is to be calculated
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (1) The equation of a quadratic Bezier curve can be written as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* with `t` the factor in the range [0.0f, 1.0f]. The above
|
|
|
|
* equation can be rewritten as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* With
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* A = p0 - 2p1 + p2
|
|
|
|
* B = 2 * (p1 - p0)
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* we have
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B(t) = t^2 * A + t * B + p0
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (2) The derivative of the above equation is
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B'(t) = 2t * A + B
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (3) The second derivative of the above equation is
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B''(t) = 2A
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (4) The equation `P(t)` of the distance from point `p` to the curve
|
|
|
|
* can be written as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* P(t) = t^2 * A + t^2 * B + p0 - p
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* With
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* C = p0 - p
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* we have
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* P(t) = t^2 * A + t * B + C
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (5) Finally, the equation of the angle between `B(t)` and `P(t)` can
|
|
|
|
* be written as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* Q(t) = P(t) . B'(t)
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (6) Our task is to find a value of `t` such that the above equation
|
|
|
|
* `Q(t)` becomes zero, this is, the point-to-curve vector makes
|
|
|
|
* 90~degrees with the curve. We solve this with the Newton-Raphson
|
|
|
|
* method.
|
|
|
|
*
|
|
|
|
* (7) We first assume an arbitary value of factor `t`, which we then
|
|
|
|
* improve.
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* t := Q(t) / Q'(t)
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* Putting the value of `Q(t)` from the above equation gives
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* t := P(t) . B'(t) / derivative(P(t) . B'(t))
|
|
|
|
* t := P(t) . B'(t) /
|
|
|
|
* (P'(t) . B'(t) + P(t) . B''(t))
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* Note that `P'(t)` is the same as `B'(t)` because the constant is
|
|
|
|
* gone due to the derivative.
|
|
|
|
*
|
|
|
|
* (8) Finally we get the equation to improve the factor as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* t := P(t) . B'(t) /
|
|
|
|
* (B'(t) . B'(t) + P(t) . B''(t))
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* [note]: `B` and `B(t)` are different in the above equations.
|
|
|
|
*/
|
|
|
|
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
|
|
|
|
FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */
|
|
|
|
FT_26D6_Vec nearest_point; /* point on curve nearest to `point` */
|
|
|
|
FT_26D6_Vec direction; /* direction of curve at `nearest_point` */
|
|
|
|
|
|
|
|
FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */
|
|
|
|
FT_26D6_Vec p; /* `point` to which shortest distance */
|
|
|
|
|
|
|
|
FT_16D16 min_factor = 0; /* factor at `nearest_point' */
|
|
|
|
FT_16D16 cross; /* to determine the sign */
|
|
|
|
FT_16D16 min = FT_INT_MAX; /* shortest squared distance */
|
|
|
|
|
|
|
|
FT_UShort iterations;
|
|
|
|
FT_UShort steps;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !conic || !out )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( conic->edge_type != SDF_EDGE_CONIC )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
p0 = conic->start_pos;
|
|
|
|
p1 = conic->control_a;
|
|
|
|
p2 = conic->end_pos;
|
|
|
|
p = point;
|
|
|
|
|
|
|
|
/* compute substitution coefficients */
|
|
|
|
aA.x = p0.x - 2 * p1.x + p2.x;
|
|
|
|
aA.y = p0.y - 2 * p1.y + p2.y;
|
|
|
|
|
|
|
|
bB.x = 2 * ( p1.x - p0.x );
|
|
|
|
bB.y = 2 * ( p1.y - p0.y );
|
|
|
|
|
|
|
|
cC.x = p0.x;
|
|
|
|
cC.y = p0.y;
|
|
|
|
|
|
|
|
/* do Newton's iterations */
|
|
|
|
for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
|
|
|
|
{
|
|
|
|
FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
|
|
|
|
FT_16D16 factor2;
|
|
|
|
FT_16D16 length;
|
|
|
|
|
|
|
|
FT_16D16_Vec curve_point; /* point on the curve */
|
|
|
|
FT_16D16_Vec dist_vector; /* `curve_point` - `p` */
|
|
|
|
|
|
|
|
FT_26D6_Vec d1; /* first derivative */
|
|
|
|
FT_26D6_Vec d2; /* second derivative */
|
|
|
|
|
|
|
|
FT_16D16 temp1;
|
|
|
|
FT_16D16 temp2;
|
|
|
|
|
|
|
|
|
|
|
|
for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
|
|
|
|
{
|
|
|
|
factor2 = FT_MulFix( factor, factor );
|
|
|
|
|
|
|
|
/* B(t) = t^2 * A + t * B + p0 */
|
|
|
|
curve_point.x = FT_MulFix( aA.x, factor2 ) +
|
|
|
|
FT_MulFix( bB.x, factor ) + cC.x;
|
|
|
|
curve_point.y = FT_MulFix( aA.y, factor2 ) +
|
|
|
|
FT_MulFix( bB.y, factor ) + cC.y;
|
|
|
|
|
|
|
|
/* convert to 16.16 */
|
|
|
|
curve_point.x = FT_26D6_16D16( curve_point.x );
|
|
|
|
curve_point.y = FT_26D6_16D16( curve_point.y );
|
|
|
|
|
|
|
|
/* P(t) in the comment */
|
|
|
|
dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
|
|
|
|
dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
|
|
|
|
|
|
|
|
length = VECTOR_LENGTH_16D16( dist_vector );
|
|
|
|
|
|
|
|
if ( length < min )
|
|
|
|
{
|
|
|
|
min = length;
|
|
|
|
min_factor = factor;
|
|
|
|
nearest_point = curve_point;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This is Newton's approximation. */
|
|
|
|
/* */
|
|
|
|
/* t := P(t) . B'(t) / */
|
|
|
|
/* (B'(t) . B'(t) + P(t) . B''(t)) */
|
|
|
|
|
|
|
|
/* B'(t) = 2tA + B */
|
|
|
|
d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x;
|
|
|
|
d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y;
|
|
|
|
|
|
|
|
/* B''(t) = 2A */
|
|
|
|
d2.x = 2 * aA.x;
|
|
|
|
d2.y = 2 * aA.y;
|
|
|
|
|
|
|
|
dist_vector.x /= 1024;
|
|
|
|
dist_vector.y /= 1024;
|
|
|
|
|
|
|
|
/* temp1 = P(t) . B'(t) */
|
|
|
|
temp1 = VEC_26D6_DOT( dist_vector, d1 );
|
|
|
|
|
|
|
|
/* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
|
|
|
|
temp2 = VEC_26D6_DOT( d1, d1 ) +
|
|
|
|
VEC_26D6_DOT( dist_vector, d2 );
|
|
|
|
|
|
|
|
factor -= FT_DivFix( temp1, temp2 );
|
|
|
|
|
|
|
|
if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* B'(t) = 2t * A + B */
|
|
|
|
direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x;
|
|
|
|
direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y;
|
|
|
|
|
|
|
|
/* determine the sign */
|
|
|
|
cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
|
|
|
|
direction.y ) -
|
|
|
|
FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
|
|
|
|
direction.x );
|
|
|
|
|
|
|
|
/* assign the values */
|
|
|
|
out->distance = min;
|
|
|
|
out->sign = cross < 0 ? 1 : -1;
|
|
|
|
|
|
|
|
if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
|
|
|
|
out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* convert to nearest vector */
|
|
|
|
nearest_point.x -= FT_26D6_16D16( p.x );
|
|
|
|
nearest_point.y -= FT_26D6_16D16( p.y );
|
|
|
|
|
|
|
|
/* compute `cross` if not perpendicular */
|
|
|
|
FT_Vector_NormLen( &direction );
|
|
|
|
FT_Vector_NormLen( &nearest_point );
|
|
|
|
|
|
|
|
out->cross = FT_MulFix( direction.x, nearest_point.y ) -
|
|
|
|
FT_MulFix( direction.y, nearest_point.x );
|
|
|
|
}
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif /* USE_NEWTON_FOR_CONIC */
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Function:
|
|
|
|
* get_min_distance_cubic
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Find the shortest distance from the `cubic` Bezier curve to a given
|
|
|
|
* `point` and assigns it to `out`. Use it for cubic curves only.
|
|
|
|
*
|
|
|
|
* @Input:
|
|
|
|
* cubic ::
|
|
|
|
* The cubic Bezier curve to which the shortest distance is to be
|
|
|
|
* computed.
|
|
|
|
*
|
|
|
|
* point ::
|
|
|
|
* Point from which the shortest distance is to be computed.
|
|
|
|
*
|
|
|
|
* @Output:
|
|
|
|
* out ::
|
|
|
|
* Signed distance from `point` to `cubic`.
|
|
|
|
*
|
|
|
|
* @Return:
|
|
|
|
* FreeType error, 0 means success.
|
|
|
|
*
|
|
|
|
* @Note:
|
|
|
|
* The function uses Newton's approximation to find the shortest
|
|
|
|
* distance. Another way would be to divide the cubic into conic or
|
|
|
|
* subdivide the curve into lines, but that is not implemented.
|
|
|
|
*
|
|
|
|
* The `cubic` parameter must have an edge type of `SDF_EDGE_CUBIC`.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static FT_Error
|
|
|
|
get_min_distance_cubic( SDF_Edge* cubic,
|
|
|
|
FT_26D6_Vec point,
|
|
|
|
SDF_Signed_Distance* out )
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The procedure to find the shortest distance from a point to a cubic
|
|
|
|
* Bezier curve is similar to quadratic curve algorithm. The only
|
|
|
|
* difference is that while calculating factor `t`, instead of a cubic
|
|
|
|
* polynomial equation we have to find the roots of a 5th degree
|
|
|
|
* polynomial equation. Solving this would require a significant amount
|
|
|
|
* of time, and still the results may not be accurate. We are thus
|
|
|
|
* going to directly approximate the value of `t` using the Newton-Raphson
|
|
|
|
* method.
|
|
|
|
*
|
|
|
|
* Let's assume that
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* p0 = first endpoint
|
|
|
|
* p1 = first control point
|
|
|
|
* p2 = second control point
|
|
|
|
* p3 = second endpoint
|
|
|
|
* p = point from which shortest distance is to be calculated
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (1) The equation of a cubic Bezier curve can be written as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B(t) = (1 - t)^3 * p0 + 3(1 - t)^2 t * p1 +
|
|
|
|
* 3(1 - t)t^2 * p2 + t^3 * p3
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* The equation can be expanded and written as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B(t) = t^3 * (-p0 + 3p1 - 3p2 + p3) +
|
|
|
|
* 3t^2 * (p0 - 2p1 + p2) + 3t * (-p0 + p1) + p0
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* With
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* A = -p0 + 3p1 - 3p2 + p3
|
|
|
|
* B = 3(p0 - 2p1 + p2)
|
|
|
|
* C = 3(-p0 + p1)
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* we have
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B(t) = t^3 * A + t^2 * B + t * C + p0
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (2) The derivative of the above equation is
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B'(t) = 3t^2 * A + 2t * B + C
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (3) The second derivative of the above equation is
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* B''(t) = 6t * A + 2B
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (4) The equation `P(t)` of the distance from point `p` to the curve
|
|
|
|
* can be written as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* P(t) = t^3 * A + t^2 * B + t * C + p0 - p
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* With
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* D = p0 - p
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* we have
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* P(t) = t^3 * A + t^2 * B + t * C + D
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (5) Finally the equation of the angle between `B(t)` and `P(t)` can
|
|
|
|
* be written as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* Q(t) = P(t) . B'(t)
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* (6) Our task is to find a value of `t` such that the above equation
|
|
|
|
* `Q(t)` becomes zero, this is, the point-to-curve vector makes
|
|
|
|
* 90~degree with curve. We solve this with the Newton-Raphson
|
|
|
|
* method.
|
|
|
|
*
|
|
|
|
* (7) We first assume an arbitary value of factor `t`, which we then
|
|
|
|
* improve.
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* t := Q(t) / Q'(t)
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* Putting the value of `Q(t)` from the above equation gives
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* t := P(t) . B'(t) / derivative(P(t) . B'(t))
|
|
|
|
* t := P(t) . B'(t) /
|
|
|
|
* (P'(t) . B'(t) + P(t) . B''(t))
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* Note that `P'(t)` is the same as `B'(t)` because the constant is
|
|
|
|
* gone due to the derivative.
|
|
|
|
*
|
|
|
|
* (8) Finally we get the equation to improve the factor as
|
|
|
|
*
|
|
|
|
* ```
|
|
|
|
* t := P(t) . B'(t) /
|
|
|
|
* (B'(t) . B'( t ) + P(t) . B''(t))
|
|
|
|
* ```
|
|
|
|
*
|
|
|
|
* [note]: `B` and `B(t)` are different in the above equations.
|
|
|
|
*/
|
|
|
|
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
|
|
|
|
FT_26D6_Vec aA, bB, cC, dD; /* A, B, C in the above comment */
|
|
|
|
FT_16D16_Vec nearest_point; /* point on curve nearest to `point` */
|
|
|
|
FT_16D16_Vec direction; /* direction of curve at `nearest_point` */
|
|
|
|
|
|
|
|
FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */
|
|
|
|
FT_26D6_Vec p; /* `point` to which shortest distance */
|
|
|
|
|
|
|
|
FT_16D16 min_factor = 0; /* factor at shortest distance */
|
|
|
|
FT_16D16 min_factor_sq = 0; /* factor at shortest distance */
|
|
|
|
FT_16D16 cross; /* to determine the sign */
|
|
|
|
FT_16D16 min = FT_INT_MAX; /* shortest distance */
|
|
|
|
|
|
|
|
FT_UShort iterations;
|
|
|
|
FT_UShort steps;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !cubic || !out )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( cubic->edge_type != SDF_EDGE_CUBIC )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
p0 = cubic->start_pos;
|
|
|
|
p1 = cubic->control_a;
|
|
|
|
p2 = cubic->control_b;
|
|
|
|
p3 = cubic->end_pos;
|
|
|
|
p = point;
|
|
|
|
|
|
|
|
/* compute substitution coefficients */
|
|
|
|
aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x;
|
|
|
|
aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y;
|
|
|
|
|
|
|
|
bB.x = 3 * ( p0.x - 2 * p1.x + p2.x );
|
|
|
|
bB.y = 3 * ( p0.y - 2 * p1.y + p2.y );
|
|
|
|
|
|
|
|
cC.x = 3 * ( p1.x - p0.x );
|
|
|
|
cC.y = 3 * ( p1.y - p0.y );
|
|
|
|
|
|
|
|
dD.x = p0.x;
|
|
|
|
dD.y = p0.y;
|
|
|
|
|
|
|
|
for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ )
|
|
|
|
{
|
|
|
|
FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS;
|
|
|
|
|
|
|
|
FT_16D16 factor2; /* factor^2 */
|
|
|
|
FT_16D16 factor3; /* factor^3 */
|
|
|
|
FT_16D16 length;
|
|
|
|
|
|
|
|
FT_16D16_Vec curve_point; /* point on the curve */
|
|
|
|
FT_16D16_Vec dist_vector; /* `curve_point' - `p' */
|
|
|
|
|
|
|
|
FT_26D6_Vec d1; /* first derivative */
|
|
|
|
FT_26D6_Vec d2; /* second derivative */
|
|
|
|
|
|
|
|
FT_16D16 temp1;
|
|
|
|
FT_16D16 temp2;
|
|
|
|
|
|
|
|
|
|
|
|
for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ )
|
|
|
|
{
|
|
|
|
factor2 = FT_MulFix( factor, factor );
|
|
|
|
factor3 = FT_MulFix( factor2, factor );
|
|
|
|
|
|
|
|
/* B(t) = t^3 * A + t^2 * B + t * C + D */
|
|
|
|
curve_point.x = FT_MulFix( aA.x, factor3 ) +
|
|
|
|
FT_MulFix( bB.x, factor2 ) +
|
|
|
|
FT_MulFix( cC.x, factor ) + dD.x;
|
|
|
|
curve_point.y = FT_MulFix( aA.y, factor3 ) +
|
|
|
|
FT_MulFix( bB.y, factor2 ) +
|
|
|
|
FT_MulFix( cC.y, factor ) + dD.y;
|
|
|
|
|
|
|
|
/* convert to 16.16 */
|
|
|
|
curve_point.x = FT_26D6_16D16( curve_point.x );
|
|
|
|
curve_point.y = FT_26D6_16D16( curve_point.y );
|
|
|
|
|
|
|
|
/* P(t) in the comment */
|
|
|
|
dist_vector.x = curve_point.x - FT_26D6_16D16( p.x );
|
|
|
|
dist_vector.y = curve_point.y - FT_26D6_16D16( p.y );
|
|
|
|
|
|
|
|
length = VECTOR_LENGTH_16D16( dist_vector );
|
|
|
|
|
|
|
|
if ( length < min )
|
|
|
|
{
|
|
|
|
min = length;
|
|
|
|
min_factor = factor;
|
|
|
|
min_factor_sq = factor2;
|
|
|
|
nearest_point = curve_point;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This the Newton's approximation. */
|
|
|
|
/* */
|
|
|
|
/* t := P(t) . B'(t) / */
|
|
|
|
/* (B'(t) . B'(t) + P(t) . B''(t)) */
|
|
|
|
|
|
|
|
/* B'(t) = 3t^2 * A + 2t * B + C */
|
|
|
|
d1.x = FT_MulFix( aA.x, 3 * factor2 ) +
|
|
|
|
FT_MulFix( bB.x, 2 * factor ) + cC.x;
|
|
|
|
d1.y = FT_MulFix( aA.y, 3 * factor2 ) +
|
|
|
|
FT_MulFix( bB.y, 2 * factor ) + cC.y;
|
|
|
|
|
|
|
|
/* B''(t) = 6t * A + 2B */
|
|
|
|
d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x;
|
|
|
|
d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y;
|
|
|
|
|
|
|
|
dist_vector.x /= 1024;
|
|
|
|
dist_vector.y /= 1024;
|
|
|
|
|
|
|
|
/* temp1 = P(t) . B'(t) */
|
|
|
|
temp1 = VEC_26D6_DOT( dist_vector, d1 );
|
|
|
|
|
|
|
|
/* temp2 = B'(t) . B'(t) + P(t) . B''(t) */
|
|
|
|
temp2 = VEC_26D6_DOT( d1, d1 ) +
|
|
|
|
VEC_26D6_DOT( dist_vector, d2 );
|
|
|
|
|
|
|
|
factor -= FT_DivFix( temp1, temp2 );
|
|
|
|
|
|
|
|
if ( factor < 0 || factor > FT_INT_16D16( 1 ) )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* B'(t) = 3t^2 * A + 2t * B + C */
|
|
|
|
direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) +
|
|
|
|
FT_MulFix( bB.x, 2 * min_factor ) + cC.x;
|
|
|
|
direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) +
|
|
|
|
FT_MulFix( bB.y, 2 * min_factor ) + cC.y;
|
|
|
|
|
|
|
|
/* determine the sign */
|
|
|
|
cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ),
|
|
|
|
direction.y ) -
|
|
|
|
FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ),
|
|
|
|
direction.x );
|
|
|
|
|
|
|
|
/* assign the values */
|
|
|
|
out->distance = min;
|
|
|
|
out->sign = cross < 0 ? 1 : -1;
|
|
|
|
|
|
|
|
if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) )
|
|
|
|
out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* convert to nearest vector */
|
|
|
|
nearest_point.x -= FT_26D6_16D16( p.x );
|
|
|
|
nearest_point.y -= FT_26D6_16D16( p.y );
|
|
|
|
|
|
|
|
/* compute `cross` if not perpendicular */
|
|
|
|
FT_Vector_NormLen( &direction );
|
|
|
|
FT_Vector_NormLen( &nearest_point );
|
|
|
|
|
|
|
|
out->cross = FT_MulFix( direction.x, nearest_point.y ) -
|
|
|
|
FT_MulFix( direction.y, nearest_point.x );
|
|
|
|
}
|
2020-08-19 08:52:34 +02:00
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Function:
|
|
|
|
* sdf_edge_get_min_distance
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Find shortest distance from `point` to any type of `edge`. It checks
|
|
|
|
* the edge type and then calls the relevant `get_min_distance_*`
|
|
|
|
* function.
|
|
|
|
*
|
|
|
|
* @Input:
|
|
|
|
* edge ::
|
|
|
|
* An edge to which the shortest distance is to be computed.
|
|
|
|
*
|
|
|
|
* point ::
|
|
|
|
* Point from which the shortest distance is to be computed.
|
|
|
|
*
|
|
|
|
* @Output:
|
|
|
|
* out ::
|
|
|
|
* Signed distance from `point` to `edge`.
|
|
|
|
*
|
|
|
|
* @Return:
|
|
|
|
* FreeType error, 0 means success.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static FT_Error
|
|
|
|
sdf_edge_get_min_distance( SDF_Edge* edge,
|
|
|
|
FT_26D6_Vec point,
|
|
|
|
SDF_Signed_Distance* out )
|
|
|
|
{
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !edge || !out )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* edge-specific distance calculation */
|
|
|
|
switch ( edge->edge_type )
|
|
|
|
{
|
|
|
|
case SDF_EDGE_LINE:
|
|
|
|
get_min_distance_line( edge, point, out );
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SDF_EDGE_CONIC:
|
|
|
|
get_min_distance_conic( edge, point, out );
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SDF_EDGE_CUBIC:
|
|
|
|
get_min_distance_cubic( edge, point, out );
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
}
|
|
|
|
|
2020-08-18 14:19:56 +02:00
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2020-08-19 08:52:34 +02:00
|
|
|
/* `sdf_generate' is not used at the moment */
|
|
|
|
#if 0
|
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Function:
|
|
|
|
* sdf_contour_get_min_distance
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* Iterate over all edges that make up the contour, find the shortest
|
|
|
|
* distance from a point to this contour, and assigns result to `out`.
|
|
|
|
*
|
|
|
|
* @Input:
|
|
|
|
* contour ::
|
|
|
|
* A contour to which the shortest distance is to be computed.
|
|
|
|
*
|
|
|
|
* point ::
|
|
|
|
* Point from which the shortest distance is to be computed.
|
|
|
|
*
|
|
|
|
* @Output:
|
|
|
|
* out ::
|
|
|
|
* Signed distance from the `point' to the `contour'.
|
|
|
|
*
|
|
|
|
* @Return:
|
|
|
|
* FreeType error, 0 means success.
|
|
|
|
*
|
|
|
|
* @Note:
|
|
|
|
* The function does not return a signed distance for each edge which
|
|
|
|
* makes up the contour, it simply returns the shortest of all the
|
|
|
|
* edges.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static FT_Error
|
|
|
|
sdf_contour_get_min_distance( SDF_Contour* contour,
|
|
|
|
FT_26D6_Vec point,
|
|
|
|
SDF_Signed_Distance* out )
|
|
|
|
{
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
SDF_Signed_Distance min_dist = max_sdf;
|
|
|
|
SDF_Edge* edge_list;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !contour || !out )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
edge_list = contour->edges;
|
|
|
|
|
|
|
|
/* iterate over all the edges manually */
|
|
|
|
while ( edge_list )
|
|
|
|
{
|
|
|
|
SDF_Signed_Distance current_dist = max_sdf;
|
|
|
|
FT_16D16 diff;
|
|
|
|
|
|
|
|
|
|
|
|
FT_CALL( sdf_edge_get_min_distance( edge_list,
|
|
|
|
point,
|
|
|
|
¤t_dist ) );
|
|
|
|
|
|
|
|
if ( current_dist.distance >= 0 )
|
|
|
|
{
|
|
|
|
diff = current_dist.distance - min_dist.distance;
|
|
|
|
|
|
|
|
|
|
|
|
if ( FT_ABS(diff ) < CORNER_CHECK_EPSILON )
|
|
|
|
min_dist = resolve_corner( min_dist, current_dist );
|
|
|
|
else if ( diff < 0 )
|
|
|
|
min_dist = current_dist;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
FT_TRACE0(( "sdf_contour_get_min_distance: Overflow.\n" ));
|
|
|
|
|
|
|
|
edge_list = edge_list->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
*out = min_dist;
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2020-08-19 09:26:58 +02:00
|
|
|
|
|
|
|
/**************************************************************************
|
|
|
|
*
|
|
|
|
* @Function:
|
|
|
|
* sdf_generate
|
|
|
|
*
|
|
|
|
* @Description:
|
|
|
|
* This is the main function that is responsible for generating signed
|
|
|
|
* distance fields. The function does not align or compute the size of
|
|
|
|
* `bitmap`; therefore the calling application must set up `bitmap`
|
|
|
|
* properly and transform the `shape' appropriately in advance.
|
|
|
|
*
|
|
|
|
* Currently we check all pixels against all contours and all edges.
|
|
|
|
*
|
|
|
|
* @Input:
|
|
|
|
* internal_params ::
|
|
|
|
* Internal parameters and properties required by the rasterizer. See
|
|
|
|
* @SDF_Params for more.
|
|
|
|
*
|
|
|
|
* shape ::
|
|
|
|
* A complete shape which is used to generate SDF.
|
|
|
|
*
|
|
|
|
* spread ::
|
|
|
|
* Maximum distances to be allowed in the output bitmap.
|
|
|
|
*
|
|
|
|
* @Output:
|
|
|
|
* bitmap ::
|
|
|
|
* The output bitmap which will contain the SDF information.
|
|
|
|
*
|
|
|
|
* @Return:
|
|
|
|
* FreeType error, 0 means success.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static FT_Error
|
|
|
|
sdf_generate( const SDF_Params internal_params,
|
|
|
|
const SDF_Shape* shape,
|
|
|
|
FT_UInt spread,
|
|
|
|
const FT_Bitmap* bitmap )
|
|
|
|
{
|
|
|
|
FT_Error error = FT_Err_Ok;
|
|
|
|
|
|
|
|
FT_UInt width = 0;
|
|
|
|
FT_UInt rows = 0;
|
|
|
|
FT_UInt x = 0; /* used to loop in x direction, i.e., width */
|
|
|
|
FT_UInt y = 0; /* used to loop in y direction, i.e., rows */
|
|
|
|
FT_UInt sp_sq = 0; /* `spread` [* `spread`] as a 16.16 fixed value */
|
|
|
|
|
|
|
|
FT_Short* buffer;
|
|
|
|
|
|
|
|
|
|
|
|
if ( !shape || !bitmap )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( spread < MIN_SPREAD || spread > MAX_SPREAD )
|
|
|
|
{
|
|
|
|
error = FT_THROW( Invalid_Argument );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
width = bitmap->width;
|
|
|
|
rows = bitmap->rows;
|
|
|
|
buffer = (FT_Short*)bitmap->buffer;
|
|
|
|
|
|
|
|
if ( USE_SQUARED_DISTANCES )
|
|
|
|
sp_sq = FT_INT_16D16( spread * spread );
|
|
|
|
else
|
|
|
|
sp_sq = FT_INT_16D16( spread );
|
|
|
|
|
|
|
|
if ( width == 0 || rows == 0 )
|
|
|
|
{
|
|
|
|
FT_TRACE0(( "sdf_generate:"
|
|
|
|
" Cannot render glyph with width/height == 0\n" ));
|
|
|
|
FT_TRACE0(( " "
|
|
|
|
" (width, height provided [%d, %d])\n",
|
|
|
|
width, rows ));
|
|
|
|
|
|
|
|
error = FT_THROW( Cannot_Render_Glyph );
|
|
|
|
goto Exit;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* loop over all rows */
|
|
|
|
for ( y = 0; y < rows; y++ )
|
|
|
|
{
|
|
|
|
/* loop over all pixels of a row */
|
|
|
|
for ( x = 0; x < width; x++ )
|
|
|
|
{
|
|
|
|
/* `grid_point` is the current pixel position; */
|
|
|
|
/* our task is to find the shortest distance */
|
|
|
|
/* from this point to the entire shape. */
|
|
|
|
FT_26D6_Vec grid_point = zero_vector;
|
|
|
|
SDF_Signed_Distance min_dist = max_sdf;
|
|
|
|
SDF_Contour* contour_list;
|
|
|
|
|
|
|
|
FT_UInt index;
|
|
|
|
FT_Short value;
|
|
|
|
|
|
|
|
|
|
|
|
grid_point.x = FT_INT_26D6( x );
|
|
|
|
grid_point.y = FT_INT_26D6( y );
|
|
|
|
|
|
|
|
/* This `grid_point' is at the corner, but we */
|
|
|
|
/* use the center of the pixel. */
|
|
|
|
grid_point.x += FT_INT_26D6( 1 ) / 2;
|
|
|
|
grid_point.y += FT_INT_26D6( 1 ) / 2;
|
|
|
|
|
|
|
|
contour_list = shape->contours;
|
|
|
|
|
|
|
|
/* iterate over all contours manually */
|
|
|
|
while ( contour_list )
|
|
|
|
{
|
|
|
|
SDF_Signed_Distance current_dist = max_sdf;
|
|
|
|
|
|
|
|
|
|
|
|
FT_CALL( sdf_contour_get_min_distance( contour_list,
|
|
|
|
grid_point,
|
|
|
|
¤t_dist ) );
|
|
|
|
|
|
|
|
if ( current_dist.distance < min_dist.distance )
|
|
|
|
min_dist = current_dist;
|
|
|
|
|
|
|
|
contour_list = contour_list->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* [OPTIMIZATION]: if (min_dist > sp_sq) then simply clamp */
|
|
|
|
/* the value to spread to avoid square_root */
|
|
|
|
|
|
|
|
/* clamp the values to spread */
|
|
|
|
if ( min_dist.distance > sp_sq )
|
|
|
|
min_dist.distance = sp_sq;
|
|
|
|
|
|
|
|
/* square_root the values and fit in a 6.10 fixed point */
|
|
|
|
if ( USE_SQUARED_DISTANCES )
|
|
|
|
min_dist.distance = square_root( min_dist.distance );
|
|
|
|
|
|
|
|
if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT )
|
|
|
|
min_dist.sign = -min_dist.sign;
|
|
|
|
if ( internal_params.flip_sign )
|
|
|
|
min_dist.sign = -min_dist.sign;
|
|
|
|
|
|
|
|
min_dist.distance /= 64; /* convert from 16.16 to 22.10 */
|
|
|
|
|
|
|
|
value = min_dist.distance & 0x0000FFFF; /* truncate to 6.10 */
|
|
|
|
value *= min_dist.sign;
|
|
|
|
|
|
|
|
if ( internal_params.flip_y )
|
|
|
|
index = y * width + x;
|
|
|
|
else
|
|
|
|
index = ( rows - y - 1 ) * width + x;
|
|
|
|
|
|
|
|
buffer[index] = value;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Exit:
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* 0 */
|
2020-08-19 08:52:34 +02:00
|
|
|
|
2020-08-16 13:39:22 +02:00
|
|
|
/* END */
|