freetype/src/cff/t2gload.c
David Turner 54e7574946 defining new types to hold "internal" fields of public
objects:

  FT_Face_Internal, FT_Size_Internal, FT_Slot_Internal

these contain some fields that may change between releases
of FreeType, without affecting the size of FT_FaceRec,
FT_SizeRec, FT_GlyphSlotRec, etc.., which means that
drivers wouldn't need to be recompiled if we only add new
fields to an internal structure..

I plan to hack a few things related to the auto-hinter and
I need this move to ensure that we will not break binary
compatibility between 2.0 and 2.1 :-)

- David
2000-11-04 02:52:02 +00:00

2053 lines
57 KiB
C

/***************************************************************************/
/* */
/* t2gload.c */
/* */
/* OpenType Glyph Loader (body). */
/* */
/* Copyright 1996-2000 by */
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
/* */
/* This file is part of the FreeType project, and may only be used, */
/* modified, and distributed under the terms of the FreeType project */
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
/* this file you indicate that you have read the license and */
/* understand and accept it fully. */
/* */
/***************************************************************************/
#include <freetype/internal/ftdebug.h>
#include <freetype/internal/ftcalc.h>
#include <freetype/internal/ftstream.h>
#include <freetype/internal/sfnt.h>
#include <freetype/ftoutln.h>
#include <freetype/tttags.h>
#ifdef FT_FLAT_COMPILE
#include "t2load.h"
#include "t2gload.h"
#else
#include <cff/t2load.h>
#include <cff/t2gload.h>
#endif
#include <freetype/internal/t2errors.h>
/*************************************************************************/
/* */
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
/* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
/* messages during execution. */
/* */
#undef FT_COMPONENT
#define FT_COMPONENT trace_t2gload
typedef enum T2_Operator_
{
t2_op_unknown = 0,
t2_op_rmoveto,
t2_op_hmoveto,
t2_op_vmoveto,
t2_op_rlineto,
t2_op_hlineto,
t2_op_vlineto,
t2_op_rrcurveto,
t2_op_hhcurveto,
t2_op_hvcurveto,
t2_op_rcurveline,
t2_op_rlinecurve,
t2_op_vhcurveto,
t2_op_vvcurveto,
t2_op_flex,
t2_op_hflex,
t2_op_hflex1,
t2_op_flex1,
t2_op_endchar,
t2_op_hstem,
t2_op_vstem,
t2_op_hstemhm,
t2_op_vstemhm,
t2_op_hintmask,
t2_op_cntrmask,
t2_op_abs,
t2_op_add,
t2_op_sub,
t2_op_div,
t2_op_neg,
t2_op_random,
t2_op_mul,
t2_op_sqrt,
t2_op_blend,
t2_op_drop,
t2_op_exch,
t2_op_index,
t2_op_roll,
t2_op_dup,
t2_op_put,
t2_op_get,
t2_op_store,
t2_op_load,
t2_op_and,
t2_op_or,
t2_op_not,
t2_op_eq,
t2_op_ifelse,
t2_op_callsubr,
t2_op_callgsubr,
t2_op_return,
/* do not remove */
t2_op_max
} T2_Operator;
#define T2_COUNT_CHECK_WIDTH 0x80
#define T2_COUNT_EXACT 0x40
#define T2_COUNT_CLEAR_STACK 0x20
static const FT_Byte t2_argument_counts[] =
{
0, /* unknown */
2 | T2_COUNT_CHECK_WIDTH | T2_COUNT_EXACT, /* rmoveto */
1 | T2_COUNT_CHECK_WIDTH | T2_COUNT_EXACT,
1 | T2_COUNT_CHECK_WIDTH | T2_COUNT_EXACT,
0 | T2_COUNT_CLEAR_STACK, /* rlineto */
0 | T2_COUNT_CLEAR_STACK,
0 | T2_COUNT_CLEAR_STACK,
0 | T2_COUNT_CLEAR_STACK, /* rrcurveto */
0 | T2_COUNT_CLEAR_STACK,
0 | T2_COUNT_CLEAR_STACK,
0 | T2_COUNT_CLEAR_STACK,
0 | T2_COUNT_CLEAR_STACK,
0 | T2_COUNT_CLEAR_STACK,
0 | T2_COUNT_CLEAR_STACK,
13, /* flex */
7,
9,
11,
0, /* endchar */
2 | T2_COUNT_CHECK_WIDTH, /* hstem */
2 | T2_COUNT_CHECK_WIDTH,
2 | T2_COUNT_CHECK_WIDTH,
2 | T2_COUNT_CHECK_WIDTH,
0, /* hintmask */
0, /* cntrmask */
1, /* abs */
2,
2,
2,
1,
0,
2,
1,
1, /* blend */
1, /* drop */
2,
1,
2,
1,
2, /* put */
1,
4,
3,
2, /* and */
2,
1,
2,
4,
1, /* callsubr */
1,
0
};
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/********** *********/
/********** *********/
/********** GENERIC CHARSTRING PARSING *********/
/********** *********/
/********** *********/
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/* */
/* <Function> */
/* T2_Init_Builder */
/* */
/* <Description> */
/* Initializes a given glyph builder. */
/* */
/* <InOut> */
/* builder :: A pointer to the glyph builder to initialize. */
/* */
/* <Input> */
/* face :: The current face object. */
/* */
/* size :: The current size object. */
/* */
/* glyph :: The current glyph object. */
/* */
static
void T2_Init_Builder( T2_Builder* builder,
TT_Face face,
T2_Size size,
T2_GlyphSlot glyph )
{
builder->path_begun = 0;
builder->load_points = 1;
builder->face = face;
builder->glyph = glyph;
builder->memory = face->root.memory;
if ( glyph )
{
FT_GlyphLoader* loader = glyph->root.internal->loader;
builder->loader = loader;
builder->base = &loader->base.outline;
builder->current = &loader->current.outline;
FT_GlyphLoader_Rewind( loader );
}
if ( size )
{
builder->scale_x = size->metrics.x_scale;
builder->scale_y = size->metrics.y_scale;
}
builder->pos_x = 0;
builder->pos_y = 0;
builder->left_bearing.x = 0;
builder->left_bearing.y = 0;
builder->advance.x = 0;
builder->advance.y = 0;
}
/*************************************************************************/
/* */
/* <Function> */
/* T2_Done_Builder */
/* */
/* <Description> */
/* Finalizes a given glyph builder. Its contents can still be used */
/* after the call, but the function saves important information */
/* within the corresponding glyph slot. */
/* */
/* <Input> */
/* builder :: A pointer to the glyph builder to finalize. */
/* */
static
void T2_Done_Builder( T2_Builder* builder )
{
T2_GlyphSlot glyph = builder->glyph;
if ( glyph )
glyph->root.outline = *builder->base;
}
/*************************************************************************/
/* */
/* <Function> */
/* t2_compute_bias */
/* */
/* <Description> */
/* Computes the bias value in dependence of the number of glyph */
/* subroutines. */
/* */
/* <Input> */
/* num_subrs :: The number of glyph subroutines. */
/* */
/* <Return> */
/* The bias value. */
static
FT_Int t2_compute_bias( FT_UInt num_subrs )
{
FT_Int result;
if ( num_subrs < 1240 )
result = 107;
else if ( num_subrs < 33900 )
result = 1131;
else
result = 32768;
return result;
}
/*************************************************************************/
/* */
/* <Function> */
/* T2_Init_Decoder */
/* */
/* <Description> */
/* Initializes a given glyph decoder. */
/* */
/* <InOut> */
/* decoder :: A pointer to the glyph builder to initialize. */
/* */
/* <Input> */
/* face :: The current face object. */
/* */
/* size :: The current size object. */
/* */
/* slot :: The current glyph object. */
/* */
FT_LOCAL_DEF
void T2_Init_Decoder( T2_Decoder* decoder,
TT_Face face,
T2_Size size,
T2_GlyphSlot slot )
{
CFF_Font* cff = (CFF_Font*)face->extra.data;
/* clear everything */
MEM_Set( decoder, 0, sizeof ( *decoder ) );
/* initialize builder */
T2_Init_Builder( &decoder->builder, face, size, slot );
/* initialize Type2 decoder */
decoder->num_globals = cff->num_global_subrs;
decoder->globals = cff->global_subrs;
decoder->globals_bias = t2_compute_bias( decoder->num_globals );
}
/* this function is used to select the locals subrs array */
FT_LOCAL_DEF
void T2_Prepare_Decoder( T2_Decoder* decoder,
FT_UInt glyph_index )
{
CFF_Font* cff = (CFF_Font*)decoder->builder.face->extra.data;
CFF_SubFont* sub = &cff->top_font;
/* manage CID fonts */
if ( cff->num_subfonts >= 1 )
{
FT_Byte fd_index = CFF_Get_FD( &cff->fd_select, glyph_index );
sub = cff->subfonts[fd_index];
}
decoder->num_locals = sub->num_local_subrs;
decoder->locals = sub->local_subrs;
decoder->locals_bias = t2_compute_bias( decoder->num_locals );
decoder->glyph_width = sub->private_dict.default_width;
decoder->nominal_width = sub->private_dict.nominal_width;
}
/* check that there is enough room for `count' more points */
static
FT_Error check_points( T2_Builder* builder,
FT_Int count )
{
return FT_GlyphLoader_Check_Points( builder->loader, count, 0 );
}
/* add a new point, do not check space */
static
void add_point( T2_Builder* builder,
FT_Pos x,
FT_Pos y,
FT_Byte flag )
{
FT_Outline* outline = builder->current;
if ( builder->load_points )
{
FT_Vector* point = outline->points + outline->n_points;
FT_Byte* control = (FT_Byte*)outline->tags + outline->n_points;
point->x = x >> 16;
point->y = y >> 16;
*control = flag ? FT_Curve_Tag_On : FT_Curve_Tag_Cubic;
builder->last = *point;
}
outline->n_points++;
}
/* check space for a new on-curve point, then add it */
static
FT_Error add_point1( T2_Builder* builder,
FT_Pos x,
FT_Pos y )
{
FT_Error error;
error = check_points( builder, 1 );
if ( !error )
add_point( builder, x, y, 1 );
return error;
}
/* check room for a new contour, then add it */
static
FT_Error add_contour( T2_Builder* builder )
{
FT_Outline* outline = builder->current;
FT_Error error;
if ( !builder->load_points )
{
outline->n_contours++;
return T2_Err_Ok;
}
error = FT_GlyphLoader_Check_Points( builder->loader, 0, 1 );
if ( !error )
{
if ( outline->n_contours > 0 )
outline->contours[outline->n_contours - 1] = outline->n_points - 1;
outline->n_contours++;
}
return error;
}
/* if a path was begun, add its first on-curve point */
static
FT_Error start_point( T2_Builder* builder,
FT_Pos x,
FT_Pos y )
{
FT_Error error = 0;
/* test whether we are building a new contour */
if ( !builder->path_begun )
{
builder->path_begun = 1;
error = add_contour( builder );
if ( !error )
error = add_point1( builder, x, y );
}
return error;
}
/* close the current contour */
static
void close_contour( T2_Builder* builder )
{
FT_Outline* outline = builder->current;
/* XXXX: We must not include the last point in the path if it */
/* is located on the first point. */
if ( outline->n_points > 1 )
{
FT_Int first = 0;
FT_Vector* p1 = outline->points + first;
FT_Vector* p2 = outline->points + outline->n_points - 1;
FT_Byte* control = (FT_Byte*)outline->tags + outline->n_points - 1;
if ( outline->n_contours > 1 )
{
first = outline->contours[outline->n_contours - 2] + 1;
p1 = outline->points + first;
}
/* `delete' last point only if it coincides with the first */
/* point and it is not a control point (which can happen). */
if ( p1->x == p2->x && p1->y == p2->y )
if ( *control == FT_Curve_Tag_On )
outline->n_points--;
}
if ( outline->n_contours > 0 )
outline->contours[outline->n_contours - 1] = outline->n_points - 1;
}
#define USE_ARGS( n ) do \
{ \
top -= n; \
if ( top < decoder->stack ) \
goto Stack_Underflow; \
} while ( 0 )
/*************************************************************************/
/* */
/* <Function> */
/* T2_Parse_CharStrings */
/* */
/* <Description> */
/* Parses a given Type 2 charstrings program. */
/* */
/* <InOut> */
/* decoder :: The current Type 1 decoder. */
/* */
/* <Input> */
/* charstring_base :: The base of the charstring stream. */
/* */
/* charstring_len :: The length in bytes of the charstring stream. */
/* */
/* <Return> */
/* FreeType error code. 0 means success. */
/* */
FT_LOCAL_DEF
FT_Error T2_Parse_CharStrings( T2_Decoder* decoder,
FT_Byte* charstring_base,
FT_Int charstring_len )
{
FT_Error error;
T2_Decoder_Zone* zone;
FT_Byte* ip;
FT_Byte* limit;
T2_Builder* builder = &decoder->builder;
FT_Outline* outline;
FT_Pos x, y;
FT_Fixed seed;
FT_Fixed* stack;
/* set default width */
decoder->num_hints = 0;
decoder->read_width = 1;
/* compute random seed from stack address of parameter */
seed = (FT_Fixed)(char*)&seed ^
(FT_Fixed)(char*)&decoder ^
(FT_Fixed)(char*)&charstring_base;
seed = ( seed ^ ( seed >> 10 ) ^ ( seed >> 20 ) ) & 0xFFFF;
if ( seed == 0 )
seed = 0x7384;
/* initialize the decoder */
decoder->top = decoder->stack;
decoder->zone = decoder->zones;
zone = decoder->zones;
stack = decoder->top;
builder->path_begun = 0;
zone->base = charstring_base;
limit = zone->limit = charstring_base + charstring_len;
ip = zone->cursor = zone->base;
error = T2_Err_Ok;
outline = builder->current;
x = builder->pos_x;
y = builder->pos_y;
/* now, execute loop */
while ( ip < limit )
{
T2_Operator op;
FT_Byte v;
/********************************************************************/
/* */
/* Decode operator or operand */
/* */
v = *ip++;
if ( v >= 32 || v == 28 )
{
FT_Int shift = 16;
FT_Int32 val;
/* this is an operand, push it on the stack */
if ( v == 28 )
{
if ( ip + 1 >= limit )
goto Syntax_Error;
val = (FT_Short)( ( (FT_Short)ip[0] << 8 ) | ip[1] );
ip += 2;
}
else if ( v < 247 )
val = (FT_Long)v - 139;
else if ( v < 251 )
{
if ( ip >= limit )
goto Syntax_Error;
val = ( (FT_Long)v - 247 ) * 256 + *ip++ + 108;
}
else if ( v < 255 )
{
if ( ip >= limit )
goto Syntax_Error;
val = -( (FT_Long)v - 251 ) * 256 - *ip++ - 108;
}
else
{
if ( ip + 3 >= limit )
goto Syntax_Error;
val = ( (FT_Int32)ip[0] << 24 ) |
( (FT_Int32)ip[1] << 16 ) |
( (FT_Int32)ip[2] << 8 ) |
ip[3];
ip += 4;
shift = 0;
}
if ( decoder->top - stack >= T2_MAX_OPERANDS )
goto Stack_Overflow;
val <<= shift;
*decoder->top++ = val;
#ifdef FT_DEBUG_LEVEL_TRACE
if ( !( val & 0xFFFF ) )
FT_TRACE4(( " %d", (FT_Int32)( val >> 16 ) ));
else
FT_TRACE4(( " %.2f", val/65536.0 ));
#endif
}
else
{
FT_Fixed* args = decoder->top;
FT_Int num_args = args - decoder->stack;
FT_Int req_args;
/* find operator */
op = t2_op_unknown;
switch ( v )
{
case 1:
op = t2_op_hstem;
break;
case 3:
op = t2_op_vstem;
break;
case 4:
op = t2_op_vmoveto;
break;
case 5:
op = t2_op_rlineto;
break;
case 6:
op = t2_op_hlineto;
break;
case 7:
op = t2_op_vlineto;
break;
case 8:
op = t2_op_rrcurveto;
break;
case 10:
op = t2_op_callsubr;
break;
case 11:
op = t2_op_return;
break;
case 12:
{
if ( ip >= limit )
goto Syntax_Error;
v = *ip++;
switch ( v )
{
case 3:
op = t2_op_and;
break;
case 4:
op = t2_op_or;
break;
case 5:
op = t2_op_not;
break;
case 8:
op = t2_op_store;
break;
case 9:
op = t2_op_abs;
break;
case 10:
op = t2_op_add;
break;
case 11:
op = t2_op_sub;
break;
case 12:
op = t2_op_div;
break;
case 13:
op = t2_op_load;
break;
case 14:
op = t2_op_neg;
break;
case 15:
op = t2_op_eq;
break;
case 18:
op = t2_op_drop;
break;
case 20:
op = t2_op_put;
break;
case 21:
op = t2_op_get;
break;
case 22:
op = t2_op_ifelse;
break;
case 23:
op = t2_op_random;
break;
case 24:
op = t2_op_mul;
break;
case 26:
op = t2_op_sqrt;
break;
case 27:
op = t2_op_dup;
break;
case 28:
op = t2_op_exch;
break;
case 29:
op = t2_op_index;
break;
case 30:
op = t2_op_roll;
break;
case 34:
op = t2_op_hflex;
break;
case 35:
op = t2_op_flex;
break;
case 36:
op = t2_op_hflex1;
break;
case 37:
op = t2_op_flex1;
break;
default:
/* decrement ip for syntax error message */
ip--;
}
}
break;
case 14:
op = t2_op_endchar;
break;
case 16:
op = t2_op_blend;
break;
case 18:
op = t2_op_hstemhm;
break;
case 19:
op = t2_op_hintmask;
break;
case 20:
op = t2_op_cntrmask;
break;
case 21:
op = t2_op_rmoveto;
break;
case 22:
op = t2_op_hmoveto;
break;
case 23:
op = t2_op_vstemhm;
break;
case 24:
op = t2_op_rcurveline;
break;
case 25:
op = t2_op_rlinecurve;
break;
case 26:
op = t2_op_vvcurveto;
break;
case 27:
op = t2_op_hhcurveto;
break;
case 29:
op = t2_op_callgsubr;
break;
case 30:
op = t2_op_vhcurveto;
break;
case 31:
op = t2_op_hvcurveto;
break;
default:
;
}
if ( op == t2_op_unknown )
goto Syntax_Error;
/* check arguments */
req_args = t2_argument_counts[op];
if ( req_args & T2_COUNT_CHECK_WIDTH )
{
args = stack;
if ( num_args & 1 && decoder->read_width )
{
decoder->glyph_width = decoder->nominal_width +
( stack[0] >> 16 );
num_args--;
args++;
}
decoder->read_width = 0;
req_args = 0;
}
req_args &= 15;
if ( num_args < req_args )
goto Stack_Underflow;
args -= req_args;
num_args -= req_args;
switch ( op )
{
case t2_op_hstem:
case t2_op_vstem:
case t2_op_hstemhm:
case t2_op_vstemhm:
/* if the number of arguments is not even, the first one */
/* is simply the glyph width, encoded as the difference */
/* to nominalWidthX */
FT_TRACE4(( op == t2_op_hstem ? " hstem" :
op == t2_op_vstem ? " vstem" :
op == t2_op_hstemhm ? " hstemhm" :
" vstemhm" ));
decoder->num_hints += num_args / 2;
args = stack;
break;
case t2_op_hintmask:
case t2_op_cntrmask:
FT_TRACE4(( op == t2_op_hintmask ? " hintmask"
: " cntrmask" ));
decoder->num_hints += num_args / 2;
ip += ( decoder->num_hints + 7 ) >> 3;
if ( ip >= limit )
goto Syntax_Error;
args = stack;
break;
case t2_op_rmoveto:
FT_TRACE4(( " rmoveto" ));
close_contour( builder );
builder->path_begun = 0;
x += args[0];
y += args[1];
args = stack;
break;
case t2_op_vmoveto:
FT_TRACE4(( " vmoveto" ));
close_contour( builder );
builder->path_begun = 0;
y += args[0];
args = stack;
break;
case t2_op_hmoveto:
FT_TRACE4(( " hmoveto" ));
close_contour( builder );
builder->path_begun = 0;
x += args[0];
args = stack;
break;
case t2_op_rlineto:
FT_TRACE4(( " rlineto" ));
if ( start_point ( builder, x, y ) ||
check_points( builder, num_args / 2 ) )
goto Memory_Error;
if ( num_args < 2 || num_args & 1 )
goto Stack_Underflow;
args = stack;
while ( args < decoder->top )
{
x += args[0];
y += args[1];
add_point( builder, x, y, 1 );
args += 2;
}
args = stack;
break;
case t2_op_hlineto:
case t2_op_vlineto:
{
FT_Int phase = ( op == t2_op_hlineto );
FT_TRACE4(( op == t2_op_hlineto ? " hlineto"
: " vlineto" ));
if ( start_point ( builder, x, y ) ||
check_points( builder, num_args ) )
goto Memory_Error;
args = stack;
while (args < decoder->top )
{
if ( phase )
x += args[0];
else
y += args[0];
if ( add_point1( builder, x, y ) )
goto Memory_Error;
args++;
phase ^= 1;
}
args = stack;
}
break;
case t2_op_rrcurveto:
FT_TRACE4(( " rrcurveto" ));
/* check number of arguments; must be a multiple of 6 */
if ( num_args % 6 != 0 )
goto Stack_Underflow;
if ( start_point ( builder, x, y ) ||
check_points( builder, num_args / 2 ) )
goto Memory_Error;
args = stack;
while ( args < decoder->top )
{
x += args[0];
y += args[1];
add_point( builder, x, y, 0 );
x += args[2];
y += args[3];
add_point( builder, x, y, 0 );
x += args[4];
y += args[5];
add_point( builder, x, y, 1 );
args += 6;
}
args = stack;
break;
case t2_op_vvcurveto:
FT_TRACE4(( " vvcurveto" ));
if ( start_point ( builder, x, y ) )
goto Memory_Error;
args = stack;
if ( num_args & 1 )
{
x += args[0];
args++;
num_args--;
}
if ( num_args % 4 != 0 )
goto Stack_Underflow;
if ( check_points( builder, 3 * ( num_args / 4 ) ) )
goto Memory_Error;
while ( args < decoder->top )
{
y += args[0];
add_point( builder, x, y, 0 );
x += args[1];
y += args[2];
add_point( builder, x, y, 0 );
y += args[3];
add_point( builder, x, y, 1 );
args += 4;
}
args = stack;
break;
case t2_op_hhcurveto:
FT_TRACE4(( " hhcurveto" ));
if ( start_point ( builder, x, y ) )
goto Memory_Error;
args = stack;
if ( num_args & 1 )
{
y += args[0];
args++;
num_args--;
}
if ( num_args % 4 != 0 )
goto Stack_Underflow;
if ( check_points( builder, 3 * ( num_args / 4 ) ) )
goto Memory_Error;
while ( args < decoder->top )
{
x += args[0];
add_point( builder, x, y, 0 );
x += args[1];
y += args[2];
add_point( builder, x, y, 0 );
x += args[3];
add_point( builder, x, y, 1 );
args += 4;
}
args = stack;
break;
case t2_op_vhcurveto:
case t2_op_hvcurveto:
{
FT_Int phase;
FT_TRACE4(( op == t2_op_vhcurveto ? " vhcurveto"
: " hvcurveto" ));
if ( start_point ( builder, x, y ) )
goto Memory_Error;
args = stack;
if (num_args < 4 || ( num_args % 4 ) > 1 )
goto Stack_Underflow;
if ( check_points( builder, ( num_args / 4 ) * 3 ) )
goto Stack_Underflow;
phase = ( op == t2_op_hvcurveto );
while ( num_args >= 4 )
{
num_args -= 4;
if ( phase )
{
x += args[0];
add_point( builder, x, y, 0 );
x += args[1];
y += args[2];
add_point( builder, x, y, 0 );
y += args[3];
if ( num_args == 1 )
x += args[4];
add_point( builder, x, y, 1 );
}
else
{
y += args[0];
add_point( builder, x, y, 0 );
x += args[1];
y += args[2];
add_point( builder, x, y, 0 );
x += args[3];
if ( num_args == 1 )
y += args[4];
add_point( builder, x, y, 1 );
}
args += 4;
phase ^= 1;
}
args = stack;
}
break;
case t2_op_rlinecurve:
{
FT_Int num_lines = ( num_args - 6 ) / 2;
FT_TRACE4(( " rlinecurve" ));
if ( num_args < 8 || ( num_args - 6 ) & 1 )
goto Stack_Underflow;
if ( start_point( builder, x, y ) ||
check_points( builder, num_lines + 3 ) )
goto Memory_Error;
args = stack;
/* first, add the line segments */
while ( num_lines > 0 )
{
x += args[0];
y += args[1];
add_point( builder, x, y, 1 );
args += 2;
num_lines--;
}
/* then the curve */
x += args[0];
y += args[1];
add_point( builder, x, y, 0 );
x += args[2];
y += args[3];
add_point( builder, x, y, 0 );
x += args[4];
y += args[5];
add_point( builder, x, y, 1 );
args = stack;
}
break;
case t2_op_rcurveline:
{
FT_Int num_curves = ( num_args - 2 ) / 6;
FT_TRACE4(( " rcurveline" ));
if ( num_args < 8 || ( num_args - 2 ) % 6 )
goto Stack_Underflow;
if ( start_point ( builder, x, y ) ||
check_points( builder, num_curves*3 + 2 ) )
goto Memory_Error;
args = stack;
/* first, add the curves */
while ( num_curves > 0 )
{
x += args[0];
y += args[1];
add_point( builder, x, y, 0 );
x += args[2];
y += args[3];
add_point( builder, x, y, 0 );
x += args[4];
y += args[5];
add_point( builder, x, y, 1 );
args += 6;
num_curves--;
}
/* then the final line */
x += args[0];
y += args[1];
add_point( builder, x, y, 1 );
args = stack;
}
break;
case t2_op_hflex1:
{
FT_Pos start_y;
FT_TRACE4(( " hflex1" ));
args = stack;
/* adding five more points; 4 control points, 1 on-curve point */
/* make sure we have enough space for the start point if it */
/* needs to be added.. */
if ( start_point( builder, x, y ) ||
check_points( builder, 6 ) )
goto Memory_Error;
/* Record the starting point's y postion for later use */
start_y = y;
/* first control point */
x += args[0];
y += args[1];
add_point( builder, x, y, 0 );
/* second control point */
x += args[2];
y += args[3];
add_point( builder, x, y, 0 );
/* join point; on curve, with y-value the same as the last */
/* control point's y-value */
x += args[4];
add_point( builder, x, y, 1 );
/* third control point, with y-value the same as the join */
/* point's y-value */
x += args[5];
add_point( builder, x, y, 0 );
/* fourth control point */
x += args[6];
y += args[7];
add_point( builder, x, y, 0 );
/* ending point, with y-value the same as the start */
x += args[8];
y = start_y;
add_point( builder, x, y, 1 );
args = stack;
break;
}
case t2_op_hflex:
{
FT_Pos start_y;
FT_TRACE4(( " hflex" ));
args = stack;
/* adding six more points; 4 control points, 2 on-curve points */
if ( start_point( builder, x, y ) ||
check_points ( builder, 6 ) )
goto Memory_Error;
/* record the starting point's y-position for later use */
start_y = y;
/* first control point */
x += args[0];
add_point( builder, x, y, 0 );
/* second control point */
x += args[1];
y += args[2];
add_point( builder, x, y, 0 );
/* join point; on curve, with y-value the same as the last */
/* control point's y-value */
x += args[3];
add_point( builder, x, y, 1 );
/* third control point, with y-value the same as the join */
/* point's y-value */
x += args[4];
add_point( builder, x, y, 0 );
/* fourth control point */
x += args[5];
y = start_y;
add_point( builder, x, y, 0 );
/* ending point, with y-value the same as the start point's */
/* y-value -- we don't add this point, though */
x += args[6];
add_point( builder, x, y, 1 );
args = stack;
break;
}
case t2_op_flex1:
{
FT_Pos start_x, start_y; /* record start x, y values for alter */
/* use */
FT_Int dx = 0, dy = 0; /* used in horizontal/vertical */
/* algorithm below */
FT_Int horizontal, count;
FT_TRACE4(( " flex1" ));
/* adding six more points; 4 control points, 2 on-curve points */
if ( start_point( builder, x, y ) ||
check_points( builder, 6 ) )
goto Memory_Error;
/* record the starting point's x, y postion for later use */
start_x = x;
start_y = y;
/* XXX: figure out whether this is supposed to be a horizontal */
/* or vertical flex; the Type 2 specification is vague... */
args = stack;
/* grab up to the last argument */
for ( count = 5; count > 0; count-- )
{
dx += args[0];
dy += args[1];
args += 2;
}
/* rewind */
args = stack;
if ( dx < 0 ) dx = -dx;
if ( dy < 0 ) dy = -dy;
/* strange test, but here it is... */
horizontal = ( dx > dy );
for ( count = 5; count > 0; count-- )
{
x += args[0];
y += args[1];
add_point( builder, x, y, (FT_Bool)( count == 3 ) );
args += 2;
}
/* is last operand an x- or y-delta? */
if ( horizontal )
{
x += args[0];
y = start_y;
}
else
{
x = start_x;
y += args[0];
}
add_point( builder, x, y, 1 );
args = stack;
break;
}
case t2_op_flex:
{
FT_UInt count;
FT_TRACE4(( " flex" ));
if ( start_point( builder, x, y ) ||
check_points( builder, 6 ) )
goto Memory_Error;
args = stack;
for ( count = 6; count > 0; count-- )
{
x += args[0];
y += args[1];
add_point( builder, x, y,
(FT_Bool)( count == 3 || count == 0 ) );
args += 2;
}
args = stack;
}
break;
case t2_op_endchar:
FT_TRACE4(( " endchar" ));
close_contour( builder );
/* add current outline to the glyph slot */
FT_GlyphLoader_Add( builder->loader );
/* return now! */
FT_TRACE4(( "\n\n" ));
return T2_Err_Ok;
case t2_op_abs:
FT_TRACE4(( " abs" ));
if ( args[0] < 0 )
args[0] = -args[0];
args++;
break;
case t2_op_add:
FT_TRACE4(( " add" ));
args[0] += args[1];
args++;
break;
case t2_op_sub:
FT_TRACE4(( " sub" ));
args[0] -= args[1];
args++;
break;
case t2_op_div:
FT_TRACE4(( " div" ));
args[0] = FT_DivFix( args[0], args[1] );
args++;
break;
case t2_op_neg:
FT_TRACE4(( " neg" ));
args[0] = -args[0];
args++;
break;
case t2_op_random:
{
FT_Fixed rand;
FT_TRACE4(( " rand" ));
rand = seed;
if ( rand >= 0x8000 )
rand++;
args[0] = rand;
seed = FT_MulFix( seed, 0x10000L - seed );
if ( seed == 0 )
seed += 0x2873;
args++;
}
break;
case t2_op_mul:
FT_TRACE4(( " mul" ));
args[0] = FT_MulFix( args[0], args[1] );
args++;
break;
case t2_op_sqrt:
FT_TRACE4(( " sqrt" ));
if ( args[0] > 0 )
{
FT_Int count = 9;
FT_Fixed root = args[0];
FT_Fixed new_root;
for (;;)
{
new_root = ( root + FT_DivFix(args[0],root) + 1 ) >> 1;
if ( new_root == root || count <= 0 )
break;
root = new_root;
}
args[0] = new_root;
}
else
args[0] = 0;
args++;
break;
case t2_op_drop:
/* nothing */
FT_TRACE4(( " drop" ));
break;
case t2_op_exch:
{
FT_Fixed tmp;
FT_TRACE4(( " exch" ));
tmp = args[0];
args[0] = args[1];
args[1] = tmp;
args += 2;
}
break;
case t2_op_index:
{
FT_Int index = args[0] >> 16;
FT_TRACE4(( " index" ));
if ( index < 0 )
index = 0;
else if ( index > num_args - 2 )
index = num_args - 2;
args[0] = args[-( index + 1 )];
args++;
}
break;
case t2_op_roll:
{
FT_Int count = (FT_Int)( args[0] >> 16 );
FT_Int index = (FT_Int)( args[1] >> 16 );
FT_TRACE4(( " roll" ));
if ( count <= 0 )
count = 1;
args -= count;
if ( args < stack )
goto Stack_Underflow;
if ( index >= 0 )
{
while ( index > 0 )
{
FT_Fixed tmp = args[count - 1];
FT_Int i;
for ( i = count - 2; i >= 0; i-- )
args[i + 1] = args[i];
args[0] = tmp;
index--;
}
}
else
{
while ( index < 0 )
{
FT_Fixed tmp = args[0];
FT_Int i;
for ( i = 0; i < count - 1; i++ )
args[i] = args[i + 1];
args[count - 1] = tmp;
index++;
}
}
args += count;
}
break;
case t2_op_dup:
FT_TRACE4(( " dup" ));
args[1] = args[0];
args++;
break;
case t2_op_put:
{
FT_Fixed val = args[0];
FT_Int index = (FT_Int)( args[1] >> 16 );
FT_TRACE4(( " put" ));
if ( index >= 0 && index < decoder->len_buildchar )
decoder->buildchar[index] = val;
}
break;
case t2_op_get:
{
FT_Int index = (FT_Int)( args[0] >> 16 );
FT_Fixed val = 0;
FT_TRACE4(( " get" ));
if ( index >= 0 && index < decoder->len_buildchar )
val = decoder->buildchar[index];
args[0] = val;
args++;
}
break;
case t2_op_store:
FT_TRACE4(( " store "));
goto Unimplemented;
case t2_op_load:
FT_TRACE4(( " load" ));
goto Unimplemented;
case t2_op_and:
{
FT_Fixed cond = args[0] && args[1];
FT_TRACE4(( " and" ));
args[0] = cond ? 0x10000L : 0;
args++;
}
break;
case t2_op_or:
{
FT_Fixed cond = args[0] || args[1];
FT_TRACE4(( " or" ));
args[0] = cond ? 0x10000L : 0;
args++;
}
break;
case t2_op_eq:
{
FT_Fixed cond = !args[0];
FT_TRACE4(( " eq" ));
args[0] = cond ? 0x10000L : 0;
args++;
}
break;
case t2_op_ifelse:
{
FT_Fixed cond = (args[2] <= args[3]);
FT_TRACE4(( " ifelse" ));
if ( !cond )
args[0] = args[1];
args++;
}
break;
case t2_op_callsubr:
{
FT_UInt index = (FT_UInt)( ( args[0] >> 16 ) +
decoder->locals_bias );
FT_TRACE4(( " callsubr(%d)", index ));
if ( index >= decoder->num_locals )
{
FT_ERROR(( "T2_Parse_CharStrings:" ));
FT_ERROR(( " invalid local subr index\n" ));
goto Syntax_Error;
}
if ( zone - decoder->zones >= T2_MAX_SUBRS_CALLS )
{
FT_ERROR(( "T2_Parse_CharStrings: too many nested subrs\n" ));
goto Syntax_Error;
}
zone->cursor = ip; /* save current instruction pointer */
zone++;
zone->base = decoder->locals[index];
zone->limit = decoder->locals[index+1];
zone->cursor = zone->base;
if ( !zone->base )
{
FT_ERROR(( "T2_Parse_CharStrings: invoking empty subrs!\n" ));
goto Syntax_Error;
}
decoder->zone = zone;
ip = zone->base;
limit = zone->limit;
}
break;
case t2_op_callgsubr:
{
FT_UInt index = (FT_UInt)( ( args[0] >> 16 ) +
decoder->globals_bias );
FT_TRACE4(( " callgsubr(%d)", index ));
if ( index >= decoder->num_globals )
{
FT_ERROR(( "T2_Parse_CharStrings:" ));
FT_ERROR(( " invalid global subr index\n" ));
goto Syntax_Error;
}
if ( zone - decoder->zones >= T2_MAX_SUBRS_CALLS )
{
FT_ERROR(( "T2_Parse_CharStrings: too many nested subrs\n" ));
goto Syntax_Error;
}
zone->cursor = ip; /* save current instruction pointer */
zone++;
zone->base = decoder->globals[index];
zone->limit = decoder->globals[index+1];
zone->cursor = zone->base;
if ( !zone->base )
{
FT_ERROR(( "T2_Parse_CharStrings: invoking empty subrs!\n" ));
goto Syntax_Error;
}
decoder->zone = zone;
ip = zone->base;
limit = zone->limit;
}
break;
case t2_op_return:
FT_TRACE4(( " return" ));
if ( decoder->zone <= decoder->zones )
{
FT_ERROR(( "T2_Parse_CharStrings: unexpected return\n" ));
goto Syntax_Error;
}
decoder->zone--;
zone = decoder->zone;
ip = zone->cursor;
limit = zone->limit;
break;
default:
Unimplemented:
FT_ERROR(( "Unimplemented opcode: %d", ip[-1] ));
if ( ip[-1] == 12 )
FT_ERROR(( " %d", ip[0] ));
FT_ERROR(( "\n" ));
return T2_Err_Unimplemented_Feature;
}
decoder->top = args;
} /* general operator processing */
} /* while ip < limit */
FT_TRACE4(( "..end..\n\n" ));
return error;
Syntax_Error:
FT_TRACE4(( "T2_Parse_CharStrings: syntax error!" ));
return T2_Err_Invalid_File_Format;
Stack_Underflow:
FT_TRACE4(( "T2_Parse_CharStrings: stack underflow!" ));
return T2_Err_Too_Few_Arguments;
Stack_Overflow:
FT_TRACE4(( "T2_Parse_CharStrings: stack overflow!" ));
return T2_Err_Stack_Overflow;
Memory_Error:
return builder->error;
}
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/********** *********/
/********** *********/
/********** COMPUTE THE MAXIMUM ADVANCE WIDTH *********/
/********** *********/
/********** The following code is in charge of computing *********/
/********** the maximum advance width of the font. It *********/
/********** quickly processes each glyph charstring to *********/
/********** extract the value from either a `sbw' or `seac' *********/
/********** operator. *********/
/********** *********/
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
#if 0 /* unused until we support pure CFF fonts */
FT_LOCAL_DEF
FT_Error T2_Compute_Max_Advance( TT_Face face,
FT_Int* max_advance )
{
FT_Error error = 0;
T2_Decoder decoder;
FT_Int glyph_index;
CFF_Font* cff = (CFF_Font*)face->other;
*max_advance = 0;
/* Initialize load decoder */
T2_Init_Decoder( &decoder, face, 0, 0 );
decoder.builder.metrics_only = 1;
decoder.builder.load_points = 0;
/* For each glyph, parse the glyph charstring and extract */
/* the advance width. */
for ( glyph_index = 0; glyph_index < face->root.num_glyphs;
glyph_index++ )
{
FT_Byte* charstring;
FT_ULong charstring_len;
/* now get load the unscaled outline */
error = T2_Access_Element( &cff->charstrings_index, glyph_index,
&charstring, &charstring_len );
if ( !error )
{
T2_Prepare_Decoder( &decoder, glyph_index );
error = T2_Parse_CharStrings( &decoder, charstring, charstring_len );
T2_Forget_Element( &cff->charstrings_index, &charstring );
}
/* ignore the error if one has occurred -- skip to next glyph */
error = 0;
}
*max_advance = decoder.builder.advance.x;
return T2_Err_Ok;
}
#endif /* 0 */
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/********** *********/
/********** *********/
/********** UNHINTED GLYPH LOADER *********/
/********** *********/
/********** The following code is in charge of loading a *********/
/********** single outline. It completely ignores hinting *********/
/********** and is used when FT_LOAD_NO_HINTING is set. *********/
/********** *********/
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
FT_LOCAL_DEF
FT_Error T2_Load_Glyph( T2_GlyphSlot glyph,
T2_Size size,
FT_Int glyph_index,
FT_Int load_flags )
{
FT_Error error;
T2_Decoder decoder;
TT_Face face = (TT_Face)glyph->root.face;
FT_Bool hinting;
CFF_Font* cff = (CFF_Font*)face->extra.data;
if ( load_flags & FT_LOAD_NO_RECURSE )
load_flags |= FT_LOAD_NO_SCALE | FT_LOAD_NO_HINTING;
glyph->x_scale = 0x10000L;
glyph->y_scale = 0x10000L;
if ( size )
{
glyph->x_scale = size->metrics.x_scale;
glyph->y_scale = size->metrics.y_scale;
}
glyph->root.outline.n_points = 0;
glyph->root.outline.n_contours = 0;
hinting = ( load_flags & FT_LOAD_NO_SCALE ) == 0 &&
( load_flags & FT_LOAD_NO_HINTING ) == 0;
glyph->root.format = ft_glyph_format_outline; /* by default */
{
FT_Byte* charstring;
FT_ULong charstring_len;
T2_Init_Decoder( &decoder, face, size, glyph );
decoder.builder.no_recurse =
(FT_Bool)( ( load_flags & FT_LOAD_NO_RECURSE ) != 0 );
/* now load the unscaled outline */
error = T2_Access_Element( &cff->charstrings_index, glyph_index,
&charstring, &charstring_len );
if ( !error )
{
T2_Prepare_Decoder( &decoder, glyph_index );
error = T2_Parse_CharStrings( &decoder, charstring, charstring_len );
T2_Forget_Element( &cff->charstrings_index, &charstring );
}
/* save new glyph tables */
T2_Done_Builder( &decoder.builder );
}
/* Now, set the metrics -- this is rather simple, as */
/* the left side bearing is the xMin, and the top side */
/* bearing the yMax. */
if ( !error )
{
/* for composite glyphs, return only left side bearing and */
/* advance width */
if ( glyph->root.format == ft_glyph_format_composite )
{
glyph->root.metrics.horiBearingX = decoder.builder.left_bearing.x;
glyph->root.metrics.horiAdvance = decoder.glyph_width;
}
else
{
FT_BBox cbox;
FT_Glyph_Metrics* metrics = &glyph->root.metrics;
/* copy the _unscaled_ advance width */
metrics->horiAdvance = decoder.glyph_width;
glyph->root.linearHoriAdvance = decoder.glyph_width;
/* make up vertical metrics */
metrics->vertBearingX = 0;
metrics->vertBearingY = 0;
metrics->vertAdvance = 0;
glyph->root.linearVertAdvance = 0;
glyph->root.format = ft_glyph_format_outline;
glyph->root.outline.flags = 0;
if ( size && size->metrics.y_ppem < 24 )
glyph->root.outline.flags |= ft_outline_high_precision;
glyph->root.outline.flags |= ft_outline_reverse_fill;
if ( ( load_flags & FT_LOAD_NO_SCALE ) == 0 )
{
/* scale the outline and the metrics */
FT_Int n;
FT_Outline* cur = &glyph->root.outline;
FT_Vector* vec = cur->points;
FT_Fixed x_scale = glyph->x_scale;
FT_Fixed y_scale = glyph->y_scale;
/* First of all, scale the points */
for ( n = cur->n_points; n > 0; n--, vec++ )
{
vec->x = FT_MulFix( vec->x, x_scale );
vec->y = FT_MulFix( vec->y, y_scale );
}
FT_Outline_Get_CBox( &glyph->root.outline, &cbox );
/* Then scale the metrics */
metrics->horiAdvance = FT_MulFix( metrics->horiAdvance, x_scale );
metrics->vertAdvance = FT_MulFix( metrics->vertAdvance, y_scale );
metrics->vertBearingX = FT_MulFix( metrics->vertBearingX, x_scale );
metrics->vertBearingY = FT_MulFix( metrics->vertBearingY, y_scale );
}
#if 0
/* apply the font matrix */
FT_Outline_Transform( &glyph->root.outline, cff->font_matrix );
#endif
/* compute the other metrics */
FT_Outline_Get_CBox( &glyph->root.outline, &cbox );
/* grid fit the bounding box if necessary */
if ( hinting )
{
cbox.xMin &= -64;
cbox.yMin &= -64;
cbox.xMax = ( cbox.xMax + 63 ) & -64;
cbox.yMax = ( cbox.yMax + 63 ) & -64;
}
metrics->width = cbox.xMax - cbox.xMin;
metrics->height = cbox.yMax - cbox.yMin;
metrics->horiBearingX = cbox.xMin;
metrics->horiBearingY = cbox.yMax;
}
}
return error;
}
/* END */