dac5644cea
Under normal circumstances we are usually close to the desired range of angle values, so that the remainder is not really necessary. * src/base/fttrigon.c (FT_Angle_Diff): Use loops instead of remainder. * src/autofit/aftypes.h (AF_ANGLE_DIFF): Ditto in the unused macro.
526 lines
12 KiB
C
526 lines
12 KiB
C
/***************************************************************************/
|
|
/* */
|
|
/* fttrigon.c */
|
|
/* */
|
|
/* FreeType trigonometric functions (body). */
|
|
/* */
|
|
/* Copyright 2001-2015 by */
|
|
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
/* */
|
|
/* This file is part of the FreeType project, and may only be used, */
|
|
/* modified, and distributed under the terms of the FreeType project */
|
|
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
/* this file you indicate that you have read the license and */
|
|
/* understand and accept it fully. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* This is a fixed-point CORDIC implementation of trigonometric */
|
|
/* functions as well as transformations between Cartesian and polar */
|
|
/* coordinates. The angles are represented as 16.16 fixed-point values */
|
|
/* in degrees, i.e., the angular resolution is 2^-16 degrees. Note that */
|
|
/* only vectors longer than 2^16*180/pi (or at least 22 bits) on a */
|
|
/* discrete Cartesian grid can have the same or better angular */
|
|
/* resolution. Therefore, to maintain this precision, some functions */
|
|
/* require an interim upscaling of the vectors, whereas others operate */
|
|
/* with 24-bit long vectors directly. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
#include <ft2build.h>
|
|
#include FT_INTERNAL_OBJECTS_H
|
|
#include FT_INTERNAL_CALC_H
|
|
#include FT_TRIGONOMETRY_H
|
|
|
|
|
|
/* the Cordic shrink factor 0.858785336480436 * 2^32 */
|
|
#define FT_TRIG_SCALE 0xDBD95B16UL
|
|
|
|
/* the highest bit in overflow-safe vector components, */
|
|
/* MSB of 0.858785336480436 * sqrt(0.5) * 2^30 */
|
|
#define FT_TRIG_SAFE_MSB 29
|
|
|
|
/* this table was generated for FT_PI = 180L << 16, i.e. degrees */
|
|
#define FT_TRIG_MAX_ITERS 23
|
|
|
|
static const FT_Angle
|
|
ft_trig_arctan_table[] =
|
|
{
|
|
1740967L, 919879L, 466945L, 234379L, 117304L, 58666L, 29335L,
|
|
14668L, 7334L, 3667L, 1833L, 917L, 458L, 229L, 115L,
|
|
57L, 29L, 14L, 7L, 4L, 2L, 1L
|
|
};
|
|
|
|
|
|
#ifdef FT_LONG64
|
|
|
|
/* multiply a given value by the CORDIC shrink factor */
|
|
static FT_Fixed
|
|
ft_trig_downscale( FT_Fixed val )
|
|
{
|
|
FT_Int s = 1;
|
|
|
|
|
|
if ( val < 0 )
|
|
{
|
|
val = -val;
|
|
s = -1;
|
|
}
|
|
|
|
/* 0x40000000 comes from regression analysis between true */
|
|
/* and CORDIC hypotenuse, so it minimizes the error */
|
|
val = (FT_Fixed)( ( (FT_Int64)val * FT_TRIG_SCALE + 0x40000000UL ) >> 32 );
|
|
|
|
return s < 0 ? -val : val;
|
|
}
|
|
|
|
#else /* !FT_LONG64 */
|
|
|
|
/* multiply a given value by the CORDIC shrink factor */
|
|
static FT_Fixed
|
|
ft_trig_downscale( FT_Fixed val )
|
|
{
|
|
FT_Int s = 1;
|
|
FT_UInt32 lo1, hi1, lo2, hi2, lo, hi, i1, i2;
|
|
|
|
|
|
if ( val < 0 )
|
|
{
|
|
val = -val;
|
|
s = -1;
|
|
}
|
|
|
|
lo1 = (FT_UInt32)val & 0x0000FFFFU;
|
|
hi1 = (FT_UInt32)val >> 16;
|
|
lo2 = FT_TRIG_SCALE & 0x0000FFFFU;
|
|
hi2 = FT_TRIG_SCALE >> 16;
|
|
|
|
lo = lo1 * lo2;
|
|
i1 = lo1 * hi2;
|
|
i2 = lo2 * hi1;
|
|
hi = hi1 * hi2;
|
|
|
|
/* Check carry overflow of i1 + i2 */
|
|
i1 += i2;
|
|
hi += (FT_UInt32)( i1 < i2 ) << 16;
|
|
|
|
hi += i1 >> 16;
|
|
i1 = i1 << 16;
|
|
|
|
/* Check carry overflow of i1 + lo */
|
|
lo += i1;
|
|
hi += ( lo < i1 );
|
|
|
|
/* 0x40000000 comes from regression analysis between true */
|
|
/* and CORDIC hypotenuse, so it minimizes the error */
|
|
|
|
/* Check carry overflow of lo + 0x40000000 */
|
|
lo += 0x40000000UL;
|
|
hi += ( lo < 0x40000000UL );
|
|
|
|
val = (FT_Fixed)hi;
|
|
|
|
return s < 0 ? -val : val;
|
|
}
|
|
|
|
#endif /* !FT_LONG64 */
|
|
|
|
|
|
/* undefined and never called for zero vector */
|
|
static FT_Int
|
|
ft_trig_prenorm( FT_Vector* vec )
|
|
{
|
|
FT_Pos x, y;
|
|
FT_Int shift;
|
|
|
|
|
|
x = vec->x;
|
|
y = vec->y;
|
|
|
|
shift = FT_MSB( (FT_UInt32)( FT_ABS( x ) | FT_ABS( y ) ) );
|
|
|
|
if ( shift <= FT_TRIG_SAFE_MSB )
|
|
{
|
|
shift = FT_TRIG_SAFE_MSB - shift;
|
|
vec->x = (FT_Pos)( (FT_ULong)x << shift );
|
|
vec->y = (FT_Pos)( (FT_ULong)y << shift );
|
|
}
|
|
else
|
|
{
|
|
shift -= FT_TRIG_SAFE_MSB;
|
|
vec->x = x >> shift;
|
|
vec->y = y >> shift;
|
|
shift = -shift;
|
|
}
|
|
|
|
return shift;
|
|
}
|
|
|
|
|
|
static void
|
|
ft_trig_pseudo_rotate( FT_Vector* vec,
|
|
FT_Angle theta )
|
|
{
|
|
FT_Int i;
|
|
FT_Fixed x, y, xtemp, b;
|
|
const FT_Angle *arctanptr;
|
|
|
|
|
|
x = vec->x;
|
|
y = vec->y;
|
|
|
|
/* Rotate inside [-PI/4,PI/4] sector */
|
|
while ( theta < -FT_ANGLE_PI4 )
|
|
{
|
|
xtemp = y;
|
|
y = -x;
|
|
x = xtemp;
|
|
theta += FT_ANGLE_PI2;
|
|
}
|
|
|
|
while ( theta > FT_ANGLE_PI4 )
|
|
{
|
|
xtemp = -y;
|
|
y = x;
|
|
x = xtemp;
|
|
theta -= FT_ANGLE_PI2;
|
|
}
|
|
|
|
arctanptr = ft_trig_arctan_table;
|
|
|
|
/* Pseudorotations, with right shifts */
|
|
for ( i = 1, b = 1; i < FT_TRIG_MAX_ITERS; b <<= 1, i++ )
|
|
{
|
|
if ( theta < 0 )
|
|
{
|
|
xtemp = x + ( ( y + b ) >> i );
|
|
y = y - ( ( x + b ) >> i );
|
|
x = xtemp;
|
|
theta += *arctanptr++;
|
|
}
|
|
else
|
|
{
|
|
xtemp = x - ( ( y + b ) >> i );
|
|
y = y + ( ( x + b ) >> i );
|
|
x = xtemp;
|
|
theta -= *arctanptr++;
|
|
}
|
|
}
|
|
|
|
vec->x = x;
|
|
vec->y = y;
|
|
}
|
|
|
|
|
|
static void
|
|
ft_trig_pseudo_polarize( FT_Vector* vec )
|
|
{
|
|
FT_Angle theta;
|
|
FT_Int i;
|
|
FT_Fixed x, y, xtemp, b;
|
|
const FT_Angle *arctanptr;
|
|
|
|
|
|
x = vec->x;
|
|
y = vec->y;
|
|
|
|
/* Get the vector into [-PI/4,PI/4] sector */
|
|
if ( y > x )
|
|
{
|
|
if ( y > -x )
|
|
{
|
|
theta = FT_ANGLE_PI2;
|
|
xtemp = y;
|
|
y = -x;
|
|
x = xtemp;
|
|
}
|
|
else
|
|
{
|
|
theta = y > 0 ? FT_ANGLE_PI : -FT_ANGLE_PI;
|
|
x = -x;
|
|
y = -y;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ( y < -x )
|
|
{
|
|
theta = -FT_ANGLE_PI2;
|
|
xtemp = -y;
|
|
y = x;
|
|
x = xtemp;
|
|
}
|
|
else
|
|
{
|
|
theta = 0;
|
|
}
|
|
}
|
|
|
|
arctanptr = ft_trig_arctan_table;
|
|
|
|
/* Pseudorotations, with right shifts */
|
|
for ( i = 1, b = 1; i < FT_TRIG_MAX_ITERS; b <<= 1, i++ )
|
|
{
|
|
if ( y > 0 )
|
|
{
|
|
xtemp = x + ( ( y + b ) >> i );
|
|
y = y - ( ( x + b ) >> i );
|
|
x = xtemp;
|
|
theta += *arctanptr++;
|
|
}
|
|
else
|
|
{
|
|
xtemp = x - ( ( y + b ) >> i );
|
|
y = y + ( ( x + b ) >> i );
|
|
x = xtemp;
|
|
theta -= *arctanptr++;
|
|
}
|
|
}
|
|
|
|
/* round theta to acknowledge its error that mostly comes */
|
|
/* from accumulated rounding errors in the arctan table */
|
|
if ( theta >= 0 )
|
|
theta = FT_PAD_ROUND( theta, 16 );
|
|
else
|
|
theta = -FT_PAD_ROUND( -theta, 16 );
|
|
|
|
vec->x = x;
|
|
vec->y = theta;
|
|
}
|
|
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
FT_EXPORT_DEF( FT_Fixed )
|
|
FT_Cos( FT_Angle angle )
|
|
{
|
|
FT_Vector v;
|
|
|
|
|
|
FT_Vector_Unit( &v, angle );
|
|
|
|
return v.x;
|
|
}
|
|
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
FT_EXPORT_DEF( FT_Fixed )
|
|
FT_Sin( FT_Angle angle )
|
|
{
|
|
FT_Vector v;
|
|
|
|
|
|
FT_Vector_Unit( &v, angle );
|
|
|
|
return v.y;
|
|
}
|
|
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
FT_EXPORT_DEF( FT_Fixed )
|
|
FT_Tan( FT_Angle angle )
|
|
{
|
|
FT_Vector v;
|
|
|
|
|
|
FT_Vector_Unit( &v, angle );
|
|
|
|
return FT_DivFix( v.y, v.x );
|
|
}
|
|
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
FT_EXPORT_DEF( FT_Angle )
|
|
FT_Atan2( FT_Fixed dx,
|
|
FT_Fixed dy )
|
|
{
|
|
FT_Vector v;
|
|
|
|
|
|
if ( dx == 0 && dy == 0 )
|
|
return 0;
|
|
|
|
v.x = dx;
|
|
v.y = dy;
|
|
ft_trig_prenorm( &v );
|
|
ft_trig_pseudo_polarize( &v );
|
|
|
|
return v.y;
|
|
}
|
|
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
FT_EXPORT_DEF( void )
|
|
FT_Vector_Unit( FT_Vector* vec,
|
|
FT_Angle angle )
|
|
{
|
|
if ( !vec )
|
|
return;
|
|
|
|
vec->x = FT_TRIG_SCALE >> 8;
|
|
vec->y = 0;
|
|
ft_trig_pseudo_rotate( vec, angle );
|
|
vec->x = ( vec->x + 0x80L ) >> 8;
|
|
vec->y = ( vec->y + 0x80L ) >> 8;
|
|
}
|
|
|
|
|
|
/* these macros return 0 for positive numbers,
|
|
and -1 for negative ones */
|
|
#define FT_SIGN_LONG( x ) ( (x) >> ( FT_SIZEOF_LONG * 8 - 1 ) )
|
|
#define FT_SIGN_INT( x ) ( (x) >> ( FT_SIZEOF_INT * 8 - 1 ) )
|
|
#define FT_SIGN_INT32( x ) ( (x) >> 31 )
|
|
#define FT_SIGN_INT16( x ) ( (x) >> 15 )
|
|
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
FT_EXPORT_DEF( void )
|
|
FT_Vector_Rotate( FT_Vector* vec,
|
|
FT_Angle angle )
|
|
{
|
|
FT_Int shift;
|
|
FT_Vector v;
|
|
|
|
|
|
if ( !vec || !angle )
|
|
return;
|
|
|
|
v = *vec;
|
|
|
|
if ( v.x == 0 && v.y == 0 )
|
|
return;
|
|
|
|
shift = ft_trig_prenorm( &v );
|
|
ft_trig_pseudo_rotate( &v, angle );
|
|
v.x = ft_trig_downscale( v.x );
|
|
v.y = ft_trig_downscale( v.y );
|
|
|
|
if ( shift > 0 )
|
|
{
|
|
FT_Int32 half = (FT_Int32)1L << ( shift - 1 );
|
|
|
|
|
|
vec->x = ( v.x + half + FT_SIGN_LONG( v.x ) ) >> shift;
|
|
vec->y = ( v.y + half + FT_SIGN_LONG( v.y ) ) >> shift;
|
|
}
|
|
else
|
|
{
|
|
shift = -shift;
|
|
vec->x = (FT_Pos)( (FT_ULong)v.x << shift );
|
|
vec->y = (FT_Pos)( (FT_ULong)v.y << shift );
|
|
}
|
|
}
|
|
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
FT_EXPORT_DEF( FT_Fixed )
|
|
FT_Vector_Length( FT_Vector* vec )
|
|
{
|
|
FT_Int shift;
|
|
FT_Vector v;
|
|
|
|
|
|
if ( !vec )
|
|
return 0;
|
|
|
|
v = *vec;
|
|
|
|
/* handle trivial cases */
|
|
if ( v.x == 0 )
|
|
{
|
|
return FT_ABS( v.y );
|
|
}
|
|
else if ( v.y == 0 )
|
|
{
|
|
return FT_ABS( v.x );
|
|
}
|
|
|
|
/* general case */
|
|
shift = ft_trig_prenorm( &v );
|
|
ft_trig_pseudo_polarize( &v );
|
|
|
|
v.x = ft_trig_downscale( v.x );
|
|
|
|
if ( shift > 0 )
|
|
return ( v.x + ( 1L << ( shift - 1 ) ) ) >> shift;
|
|
|
|
return (FT_Fixed)( (FT_UInt32)v.x << -shift );
|
|
}
|
|
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
FT_EXPORT_DEF( void )
|
|
FT_Vector_Polarize( FT_Vector* vec,
|
|
FT_Fixed *length,
|
|
FT_Angle *angle )
|
|
{
|
|
FT_Int shift;
|
|
FT_Vector v;
|
|
|
|
|
|
if ( !vec || !length || !angle )
|
|
return;
|
|
|
|
v = *vec;
|
|
|
|
if ( v.x == 0 && v.y == 0 )
|
|
return;
|
|
|
|
shift = ft_trig_prenorm( &v );
|
|
ft_trig_pseudo_polarize( &v );
|
|
|
|
v.x = ft_trig_downscale( v.x );
|
|
|
|
*length = shift >= 0 ? ( v.x >> shift )
|
|
: (FT_Fixed)( (FT_UInt32)v.x << -shift );
|
|
*angle = v.y;
|
|
}
|
|
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
FT_EXPORT_DEF( void )
|
|
FT_Vector_From_Polar( FT_Vector* vec,
|
|
FT_Fixed length,
|
|
FT_Angle angle )
|
|
{
|
|
if ( !vec )
|
|
return;
|
|
|
|
vec->x = length;
|
|
vec->y = 0;
|
|
|
|
FT_Vector_Rotate( vec, angle );
|
|
}
|
|
|
|
|
|
/* documentation is in fttrigon.h */
|
|
|
|
FT_EXPORT_DEF( FT_Angle )
|
|
FT_Angle_Diff( FT_Angle angle1,
|
|
FT_Angle angle2 )
|
|
{
|
|
FT_Angle delta = angle2 - angle1;
|
|
|
|
|
|
while ( delta <= -FT_ANGLE_PI )
|
|
delta += FT_ANGLE_2PI;
|
|
|
|
while ( delta > FT_ANGLE_PI )
|
|
delta -= FT_ANGLE_2PI;
|
|
|
|
return delta;
|
|
}
|
|
|
|
|
|
/* END */
|