1a9c3d14fb
* src/base/ftbbox.c (BBox_Cubic_Check): Scale arguments to improve accuracy and avoid overflows.
664 lines
24 KiB
C
664 lines
24 KiB
C
/***************************************************************************/
|
|
/* */
|
|
/* ftbbox.c */
|
|
/* */
|
|
/* FreeType bbox computation (body). */
|
|
/* */
|
|
/* Copyright 1996-2002, 2004, 2006, 2010, 2013 by */
|
|
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
/* */
|
|
/* This file is part of the FreeType project, and may only be used */
|
|
/* modified and distributed under the terms of the FreeType project */
|
|
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
/* this file you indicate that you have read the license and */
|
|
/* understand and accept it fully. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* This component has a _single_ role: to compute exact outline bounding */
|
|
/* boxes. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
|
|
#include <ft2build.h>
|
|
#include FT_INTERNAL_DEBUG_H
|
|
|
|
#include FT_BBOX_H
|
|
#include FT_IMAGE_H
|
|
#include FT_OUTLINE_H
|
|
#include FT_INTERNAL_CALC_H
|
|
#include FT_INTERNAL_OBJECTS_H
|
|
|
|
|
|
typedef struct TBBox_Rec_
|
|
{
|
|
FT_Vector last;
|
|
FT_BBox bbox;
|
|
|
|
} TBBox_Rec;
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* BBox_Move_To */
|
|
/* */
|
|
/* <Description> */
|
|
/* This function is used as a `move_to' and `line_to' emitter during */
|
|
/* FT_Outline_Decompose(). It simply records the destination point */
|
|
/* in `user->last'; no further computations are necessary since we */
|
|
/* use the cbox as the starting bbox which must be refined. */
|
|
/* */
|
|
/* <Input> */
|
|
/* to :: A pointer to the destination vector. */
|
|
/* */
|
|
/* <InOut> */
|
|
/* user :: A pointer to the current walk context. */
|
|
/* */
|
|
/* <Return> */
|
|
/* Always 0. Needed for the interface only. */
|
|
/* */
|
|
static int
|
|
BBox_Move_To( FT_Vector* to,
|
|
TBBox_Rec* user )
|
|
{
|
|
user->last = *to;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#define CHECK_X( p, bbox ) \
|
|
( p->x < bbox.xMin || p->x > bbox.xMax )
|
|
|
|
#define CHECK_Y( p, bbox ) \
|
|
( p->y < bbox.yMin || p->y > bbox.yMax )
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* BBox_Conic_Check */
|
|
/* */
|
|
/* <Description> */
|
|
/* Finds the extrema of a 1-dimensional conic Bezier curve and update */
|
|
/* a bounding range. This version uses direct computation, as it */
|
|
/* doesn't need square roots. */
|
|
/* */
|
|
/* <Input> */
|
|
/* y1 :: The start coordinate. */
|
|
/* */
|
|
/* y2 :: The coordinate of the control point. */
|
|
/* */
|
|
/* y3 :: The end coordinate. */
|
|
/* */
|
|
/* <InOut> */
|
|
/* min :: The address of the current minimum. */
|
|
/* */
|
|
/* max :: The address of the current maximum. */
|
|
/* */
|
|
static void
|
|
BBox_Conic_Check( FT_Pos y1,
|
|
FT_Pos y2,
|
|
FT_Pos y3,
|
|
FT_Pos* min,
|
|
FT_Pos* max )
|
|
{
|
|
if ( y1 <= y3 && y2 == y1 ) /* flat arc */
|
|
goto Suite;
|
|
|
|
if ( y1 < y3 )
|
|
{
|
|
if ( y2 >= y1 && y2 <= y3 ) /* ascending arc */
|
|
goto Suite;
|
|
}
|
|
else
|
|
{
|
|
if ( y2 >= y3 && y2 <= y1 ) /* descending arc */
|
|
{
|
|
y2 = y1;
|
|
y1 = y3;
|
|
y3 = y2;
|
|
goto Suite;
|
|
}
|
|
}
|
|
|
|
y1 = y3 = y1 - FT_MulDiv( y2 - y1, y2 - y1, y1 - 2*y2 + y3 );
|
|
|
|
Suite:
|
|
if ( y1 < *min ) *min = y1;
|
|
if ( y3 > *max ) *max = y3;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* BBox_Conic_To */
|
|
/* */
|
|
/* <Description> */
|
|
/* This function is used as a `conic_to' emitter during */
|
|
/* FT_Outline_Decompose(). It checks a conic Bezier curve with the */
|
|
/* current bounding box, and computes its extrema if necessary to */
|
|
/* update it. */
|
|
/* */
|
|
/* <Input> */
|
|
/* control :: A pointer to a control point. */
|
|
/* */
|
|
/* to :: A pointer to the destination vector. */
|
|
/* */
|
|
/* <InOut> */
|
|
/* user :: The address of the current walk context. */
|
|
/* */
|
|
/* <Return> */
|
|
/* Always 0. Needed for the interface only. */
|
|
/* */
|
|
/* <Note> */
|
|
/* In the case of a non-monotonous arc, we compute directly the */
|
|
/* extremum coordinates, as it is sufficiently fast. */
|
|
/* */
|
|
static int
|
|
BBox_Conic_To( FT_Vector* control,
|
|
FT_Vector* to,
|
|
TBBox_Rec* user )
|
|
{
|
|
/* we don't need to check `to' since it is always an `on' point, thus */
|
|
/* within the bbox */
|
|
|
|
if ( CHECK_X( control, user->bbox ) )
|
|
BBox_Conic_Check( user->last.x,
|
|
control->x,
|
|
to->x,
|
|
&user->bbox.xMin,
|
|
&user->bbox.xMax );
|
|
|
|
if ( CHECK_Y( control, user->bbox ) )
|
|
BBox_Conic_Check( user->last.y,
|
|
control->y,
|
|
to->y,
|
|
&user->bbox.yMin,
|
|
&user->bbox.yMax );
|
|
|
|
user->last = *to;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* BBox_Cubic_Check */
|
|
/* */
|
|
/* <Description> */
|
|
/* Finds the extrema of a 1-dimensional cubic Bezier curve and */
|
|
/* updates a bounding range. This version uses splitting because we */
|
|
/* don't want to use square roots and extra accuracy. */
|
|
/* */
|
|
/* <Input> */
|
|
/* p1 :: The start coordinate. */
|
|
/* */
|
|
/* p2 :: The coordinate of the first control point. */
|
|
/* */
|
|
/* p3 :: The coordinate of the second control point. */
|
|
/* */
|
|
/* p4 :: The end coordinate. */
|
|
/* */
|
|
/* <InOut> */
|
|
/* min :: The address of the current minimum. */
|
|
/* */
|
|
/* max :: The address of the current maximum. */
|
|
/* */
|
|
|
|
#if 0
|
|
|
|
static FT_Pos
|
|
update_max( FT_Pos q1,
|
|
FT_Pos q2,
|
|
FT_Pos q3,
|
|
FT_Pos q4,
|
|
FT_Pos max )
|
|
{
|
|
/* for a conic segment to possibly reach new maximum */
|
|
/* one of its off-points must be above the current value */
|
|
while ( q2 > max || q3 > max )
|
|
{
|
|
/* determine which half contains the maximum and split */
|
|
if ( q1 + q2 > q3 + q4 ) /* first half */
|
|
{
|
|
q4 = q4 + q3;
|
|
q3 = q3 + q2;
|
|
q2 = q2 + q1;
|
|
q4 = q4 + q3;
|
|
q3 = q3 + q2;
|
|
q4 = ( q4 + q3 ) / 8;
|
|
q3 = q3 / 4;
|
|
q2 = q2 / 2;
|
|
}
|
|
else /* second half */
|
|
{
|
|
q1 = q1 + q2;
|
|
q2 = q2 + q3;
|
|
q3 = q3 + q4;
|
|
q1 = q1 + q2;
|
|
q2 = q2 + q3;
|
|
q1 = ( q1 + q2 ) / 8;
|
|
q2 = q2 / 4;
|
|
q3 = q3 / 2;
|
|
}
|
|
|
|
/* check if either end reached the maximum */
|
|
if ( q1 == q2 && q1 >= q3 )
|
|
{
|
|
max = q1;
|
|
break;
|
|
}
|
|
if ( q3 == q4 && q2 <= q4 )
|
|
{
|
|
max = q4;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
static void
|
|
BBox_Cubic_Check( FT_Pos p1,
|
|
FT_Pos p2,
|
|
FT_Pos p3,
|
|
FT_Pos p4,
|
|
FT_Pos* min,
|
|
FT_Pos* max )
|
|
{
|
|
FT_Pos nmin, nmax;
|
|
FT_Int shift;
|
|
|
|
/* This implementation relies on iterative bisection of the segment. */
|
|
/* The fixed-point arithmentic of bisection is inherently stable but */
|
|
/* may loose accuracy in the two lowest bits. To compensate, we */
|
|
/* upscale the segment if there is room. Large values may need to be */
|
|
/* downscaled to avoid overflows during bisection bisection. This */
|
|
/* function is only called when a control off-point is outside the */
|
|
/* the bbox and, thus, has the top absolute value among arguments. */
|
|
|
|
shift = 27 - FT_MSB( FT_ABS( p2 ) | FT_ABS( p3 ) );
|
|
|
|
if ( shift > 0 )
|
|
{
|
|
/* upscaling too much just wastes time */
|
|
if ( shift > 2 )
|
|
shift = 2;
|
|
|
|
p1 <<= shift;
|
|
p2 <<= shift;
|
|
p3 <<= shift;
|
|
p4 <<= shift;
|
|
nmin = *min << shift;
|
|
nmax = *max << shift;
|
|
}
|
|
else
|
|
{
|
|
p1 >>= -shift;
|
|
p2 >>= -shift;
|
|
p3 >>= -shift;
|
|
p4 >>= -shift;
|
|
nmin = *min >> -shift;
|
|
nmax = *max >> -shift;
|
|
}
|
|
|
|
nmax = update_max( p1, p2, p3, p4, nmax );
|
|
|
|
/* now flip the signs to update the minimum */
|
|
nmin = -update_max( -p1, -p2, -p3, -p4, -nmin );
|
|
|
|
if ( shift > 0 )
|
|
{
|
|
nmin >>= shift;
|
|
nmax >>= shift;
|
|
}
|
|
else
|
|
{
|
|
nmin <<= -shift;
|
|
nmax <<= -shift;
|
|
}
|
|
|
|
if ( nmin < *min )
|
|
*min = nmin;
|
|
if ( nmax > *max )
|
|
*max = nmax;
|
|
}
|
|
|
|
#else
|
|
|
|
static void
|
|
test_cubic_extrema( FT_Pos y1,
|
|
FT_Pos y2,
|
|
FT_Pos y3,
|
|
FT_Pos y4,
|
|
FT_Fixed u,
|
|
FT_Pos* min,
|
|
FT_Pos* max )
|
|
{
|
|
/* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */
|
|
FT_Pos b = y3 - 2*y2 + y1;
|
|
FT_Pos c = y2 - y1;
|
|
FT_Pos d = y1;
|
|
FT_Pos y;
|
|
FT_Fixed uu;
|
|
|
|
FT_UNUSED ( y4 );
|
|
|
|
|
|
/* The polynomial is */
|
|
/* */
|
|
/* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */
|
|
/* */
|
|
/* dP/dx = 3a*x^2 + 6b*x + 3c . */
|
|
/* */
|
|
/* However, we also have */
|
|
/* */
|
|
/* dP/dx(u) = 0 , */
|
|
/* */
|
|
/* which implies by subtraction that */
|
|
/* */
|
|
/* P(u) = b*u^2 + 2c*u + d . */
|
|
|
|
if ( u > 0 && u < 0x10000L )
|
|
{
|
|
uu = FT_MulFix( u, u );
|
|
y = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu );
|
|
|
|
if ( y < *min ) *min = y;
|
|
if ( y > *max ) *max = y;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
BBox_Cubic_Check( FT_Pos y1,
|
|
FT_Pos y2,
|
|
FT_Pos y3,
|
|
FT_Pos y4,
|
|
FT_Pos* min,
|
|
FT_Pos* max )
|
|
{
|
|
/* always compare first and last points */
|
|
if ( y1 < *min ) *min = y1;
|
|
else if ( y1 > *max ) *max = y1;
|
|
|
|
if ( y4 < *min ) *min = y4;
|
|
else if ( y4 > *max ) *max = y4;
|
|
|
|
/* now, try to see if there are split points here */
|
|
if ( y1 <= y4 )
|
|
{
|
|
/* flat or ascending arc test */
|
|
if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 )
|
|
return;
|
|
}
|
|
else /* y1 > y4 */
|
|
{
|
|
/* descending arc test */
|
|
if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 )
|
|
return;
|
|
}
|
|
|
|
/* There are some split points. Find them. */
|
|
/* We already made sure that a, b, and c below cannot be all zero. */
|
|
{
|
|
FT_Pos a = y4 - 3*y3 + 3*y2 - y1;
|
|
FT_Pos b = y3 - 2*y2 + y1;
|
|
FT_Pos c = y2 - y1;
|
|
FT_Pos d;
|
|
FT_Fixed t;
|
|
FT_Int shift;
|
|
|
|
|
|
/* We need to solve `ax^2+2bx+c' here, without floating points! */
|
|
/* The trick is to normalize to a different representation in order */
|
|
/* to use our 16.16 fixed-point routines. */
|
|
/* */
|
|
/* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
|
|
/* These values must fit into a single 16.16 value. */
|
|
/* */
|
|
/* We normalize a, b, and c to `8.16' fixed-point values to ensure */
|
|
/* that their product is held in a `16.16' value including the sign. */
|
|
/* Necessarily, we need to shift `a', `b', and `c' so that the most */
|
|
/* significant bit of their absolute values is at position 22. */
|
|
/* */
|
|
/* This also means that we are using 23 bits of precision to compute */
|
|
/* the zeros, independently of the range of the original polynomial */
|
|
/* coefficients. */
|
|
/* */
|
|
/* This algorithm should ensure reasonably accurate values for the */
|
|
/* zeros. Note that they are only expressed with 16 bits when */
|
|
/* computing the extrema (the zeros need to be in 0..1 exclusive */
|
|
/* to be considered part of the arc). */
|
|
|
|
shift = FT_MSB( FT_ABS( a ) | FT_ABS( b ) | FT_ABS( c ) );
|
|
|
|
if ( shift > 22 )
|
|
{
|
|
shift -= 22;
|
|
|
|
/* this loses some bits of precision, but we use 23 of them */
|
|
/* for the computation anyway */
|
|
a >>= shift;
|
|
b >>= shift;
|
|
c >>= shift;
|
|
}
|
|
else
|
|
{
|
|
shift = 22 - shift;
|
|
|
|
a <<= shift;
|
|
b <<= shift;
|
|
c <<= shift;
|
|
}
|
|
|
|
/* handle a == 0 */
|
|
if ( a == 0 )
|
|
{
|
|
if ( b != 0 )
|
|
{
|
|
t = - FT_DivFix( c, b ) / 2;
|
|
test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* solve the equation now */
|
|
d = FT_MulFix( b, b ) - FT_MulFix( a, c );
|
|
if ( d < 0 )
|
|
return;
|
|
|
|
if ( d == 0 )
|
|
{
|
|
/* there is a single split point at -b/a */
|
|
t = - FT_DivFix( b, a );
|
|
test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
|
}
|
|
else
|
|
{
|
|
/* there are two solutions; we need to filter them */
|
|
d = FT_SqrtFixed( (FT_Int32)d );
|
|
t = - FT_DivFix( b - d, a );
|
|
test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
|
|
|
t = - FT_DivFix( b + d, a );
|
|
test_cubic_extrema( y1, y2, y3, y4, t, min, max );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* <Function> */
|
|
/* BBox_Cubic_To */
|
|
/* */
|
|
/* <Description> */
|
|
/* This function is used as a `cubic_to' emitter during */
|
|
/* FT_Outline_Decompose(). It checks a cubic Bezier curve with the */
|
|
/* current bounding box, and computes its extrema if necessary to */
|
|
/* update it. */
|
|
/* */
|
|
/* <Input> */
|
|
/* control1 :: A pointer to the first control point. */
|
|
/* */
|
|
/* control2 :: A pointer to the second control point. */
|
|
/* */
|
|
/* to :: A pointer to the destination vector. */
|
|
/* */
|
|
/* <InOut> */
|
|
/* user :: The address of the current walk context. */
|
|
/* */
|
|
/* <Return> */
|
|
/* Always 0. Needed for the interface only. */
|
|
/* */
|
|
/* <Note> */
|
|
/* In the case of a non-monotonous arc, we don't compute directly */
|
|
/* extremum coordinates, we subdivide instead. */
|
|
/* */
|
|
static int
|
|
BBox_Cubic_To( FT_Vector* control1,
|
|
FT_Vector* control2,
|
|
FT_Vector* to,
|
|
TBBox_Rec* user )
|
|
{
|
|
/* We don't need to check `to' since it is always an on-point, */
|
|
/* thus within the bbox. Only segments with an off-point outside */
|
|
/* the bbox can possibly reach new extreme values. */
|
|
|
|
if ( CHECK_X( control1, user->bbox ) ||
|
|
CHECK_X( control2, user->bbox ) )
|
|
BBox_Cubic_Check( user->last.x,
|
|
control1->x,
|
|
control2->x,
|
|
to->x,
|
|
&user->bbox.xMin,
|
|
&user->bbox.xMax );
|
|
|
|
if ( CHECK_Y( control1, user->bbox ) ||
|
|
CHECK_Y( control2, user->bbox ) )
|
|
BBox_Cubic_Check( user->last.y,
|
|
control1->y,
|
|
control2->y,
|
|
to->y,
|
|
&user->bbox.yMin,
|
|
&user->bbox.yMax );
|
|
|
|
user->last = *to;
|
|
|
|
return 0;
|
|
}
|
|
|
|
FT_DEFINE_OUTLINE_FUNCS(bbox_interface,
|
|
(FT_Outline_MoveTo_Func) BBox_Move_To,
|
|
(FT_Outline_LineTo_Func) BBox_Move_To,
|
|
(FT_Outline_ConicTo_Func)BBox_Conic_To,
|
|
(FT_Outline_CubicTo_Func)BBox_Cubic_To,
|
|
0, 0
|
|
)
|
|
|
|
/* documentation is in ftbbox.h */
|
|
|
|
FT_EXPORT_DEF( FT_Error )
|
|
FT_Outline_Get_BBox( FT_Outline* outline,
|
|
FT_BBox *abbox )
|
|
{
|
|
FT_BBox cbox;
|
|
FT_BBox bbox;
|
|
FT_Vector* vec;
|
|
FT_UShort n;
|
|
|
|
|
|
if ( !abbox )
|
|
return FT_THROW( Invalid_Argument );
|
|
|
|
if ( !outline )
|
|
return FT_THROW( Invalid_Outline );
|
|
|
|
/* if outline is empty, return (0,0,0,0) */
|
|
if ( outline->n_points == 0 || outline->n_contours <= 0 )
|
|
{
|
|
abbox->xMin = abbox->xMax = 0;
|
|
abbox->yMin = abbox->yMax = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* We compute the control box as well as the bounding box of */
|
|
/* all `on' points in the outline. Then, if the two boxes */
|
|
/* coincide, we exit immediately. */
|
|
|
|
vec = outline->points;
|
|
bbox.xMin = bbox.xMax = cbox.xMin = cbox.xMax = vec->x;
|
|
bbox.yMin = bbox.yMax = cbox.yMin = cbox.yMax = vec->y;
|
|
vec++;
|
|
|
|
for ( n = 1; n < outline->n_points; n++ )
|
|
{
|
|
FT_Pos x = vec->x;
|
|
FT_Pos y = vec->y;
|
|
|
|
|
|
/* update control box */
|
|
if ( x < cbox.xMin ) cbox.xMin = x;
|
|
if ( x > cbox.xMax ) cbox.xMax = x;
|
|
|
|
if ( y < cbox.yMin ) cbox.yMin = y;
|
|
if ( y > cbox.yMax ) cbox.yMax = y;
|
|
|
|
if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON )
|
|
{
|
|
/* update bbox for `on' points only */
|
|
if ( x < bbox.xMin ) bbox.xMin = x;
|
|
if ( x > bbox.xMax ) bbox.xMax = x;
|
|
|
|
if ( y < bbox.yMin ) bbox.yMin = y;
|
|
if ( y > bbox.yMax ) bbox.yMax = y;
|
|
}
|
|
|
|
vec++;
|
|
}
|
|
|
|
/* test two boxes for equality */
|
|
if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax ||
|
|
cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax )
|
|
{
|
|
/* the two boxes are different, now walk over the outline to */
|
|
/* get the Bezier arc extrema. */
|
|
|
|
FT_Error error;
|
|
TBBox_Rec user;
|
|
|
|
#ifdef FT_CONFIG_OPTION_PIC
|
|
FT_Outline_Funcs bbox_interface;
|
|
Init_Class_bbox_interface(&bbox_interface);
|
|
#endif
|
|
|
|
user.bbox = bbox;
|
|
|
|
error = FT_Outline_Decompose( outline, &bbox_interface, &user );
|
|
if ( error )
|
|
return error;
|
|
|
|
*abbox = user.bbox;
|
|
}
|
|
else
|
|
*abbox = bbox;
|
|
|
|
return FT_Err_Ok;
|
|
}
|
|
|
|
|
|
/* END */
|