b211651ac9
include/freetype/config/ftconfig.h, builds/unix/ftconfig.in: Minor beautifying. * include/freetype/ftadvanc.h, include/freetype/ftgasp.h, include/freetype/ftlcdfil.h: Protect against FreeType 1. Some other minor fixes. * devel/ftoption.h: Synchronize with include/freetype/config/ftoption.h. Formatting, documentation improvements.
954 lines
21 KiB
C
954 lines
21 KiB
C
/***************************************************************************/
|
|
/* */
|
|
/* ftcalc.c */
|
|
/* */
|
|
/* Arithmetic computations (body). */
|
|
/* */
|
|
/* Copyright 1996-2001, 2002, 2003, 2004, 2005, 2006, 2008 by */
|
|
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
|
|
/* */
|
|
/* This file is part of the FreeType project, and may only be used, */
|
|
/* modified, and distributed under the terms of the FreeType project */
|
|
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
|
|
/* this file you indicate that you have read the license and */
|
|
/* understand and accept it fully. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Support for 1-complement arithmetic has been totally dropped in this */
|
|
/* release. You can still write your own code if you need it. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* Implementing basic computation routines. */
|
|
/* */
|
|
/* FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(), */
|
|
/* and FT_FloorFix() are declared in freetype.h. */
|
|
/* */
|
|
/*************************************************************************/
|
|
|
|
|
|
#include <ft2build.h>
|
|
#include FT_GLYPH_H
|
|
#include FT_INTERNAL_CALC_H
|
|
#include FT_INTERNAL_DEBUG_H
|
|
#include FT_INTERNAL_OBJECTS_H
|
|
|
|
#ifdef FT_MULFIX_INLINED
|
|
#undef FT_MulFix
|
|
#endif
|
|
|
|
/* we need to define a 64-bits data type here */
|
|
|
|
#ifdef FT_LONG64
|
|
|
|
typedef FT_INT64 FT_Int64;
|
|
|
|
#else
|
|
|
|
typedef struct FT_Int64_
|
|
{
|
|
FT_UInt32 lo;
|
|
FT_UInt32 hi;
|
|
|
|
} FT_Int64;
|
|
|
|
#endif /* FT_LONG64 */
|
|
|
|
|
|
/*************************************************************************/
|
|
/* */
|
|
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
|
|
/* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
|
|
/* messages during execution. */
|
|
/* */
|
|
#undef FT_COMPONENT
|
|
#define FT_COMPONENT trace_calc
|
|
|
|
|
|
/* The following three functions are available regardless of whether */
|
|
/* FT_LONG64 is defined. */
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Fixed )
|
|
FT_RoundFix( FT_Fixed a )
|
|
{
|
|
return ( a >= 0 ) ? ( a + 0x8000L ) & ~0xFFFFL
|
|
: -((-a + 0x8000L ) & ~0xFFFFL );
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Fixed )
|
|
FT_CeilFix( FT_Fixed a )
|
|
{
|
|
return ( a >= 0 ) ? ( a + 0xFFFFL ) & ~0xFFFFL
|
|
: -((-a + 0xFFFFL ) & ~0xFFFFL );
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Fixed )
|
|
FT_FloorFix( FT_Fixed a )
|
|
{
|
|
return ( a >= 0 ) ? a & ~0xFFFFL
|
|
: -((-a) & ~0xFFFFL );
|
|
}
|
|
|
|
|
|
#ifdef FT_CONFIG_OPTION_OLD_INTERNALS
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_EXPORT_DEF( FT_Int32 )
|
|
FT_Sqrt32( FT_Int32 x )
|
|
{
|
|
FT_ULong val, root, newroot, mask;
|
|
|
|
|
|
root = 0;
|
|
mask = 0x40000000L;
|
|
val = (FT_ULong)x;
|
|
|
|
do
|
|
{
|
|
newroot = root + mask;
|
|
if ( newroot <= val )
|
|
{
|
|
val -= newroot;
|
|
root = newroot + mask;
|
|
}
|
|
|
|
root >>= 1;
|
|
mask >>= 2;
|
|
|
|
} while ( mask != 0 );
|
|
|
|
return root;
|
|
}
|
|
|
|
#endif /* FT_CONFIG_OPTION_OLD_INTERNALS */
|
|
|
|
|
|
#ifdef FT_LONG64
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_MulDiv( FT_Long a,
|
|
FT_Long b,
|
|
FT_Long c )
|
|
{
|
|
FT_Int s;
|
|
FT_Long d;
|
|
|
|
|
|
s = 1;
|
|
if ( a < 0 ) { a = -a; s = -1; }
|
|
if ( b < 0 ) { b = -b; s = -s; }
|
|
if ( c < 0 ) { c = -c; s = -s; }
|
|
|
|
d = (FT_Long)( c > 0 ? ( (FT_Int64)a * b + ( c >> 1 ) ) / c
|
|
: 0x7FFFFFFFL );
|
|
|
|
return ( s > 0 ) ? d : -d;
|
|
}
|
|
|
|
|
|
#ifdef TT_USE_BYTECODE_INTERPRETER
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( FT_Long )
|
|
FT_MulDiv_No_Round( FT_Long a,
|
|
FT_Long b,
|
|
FT_Long c )
|
|
{
|
|
FT_Int s;
|
|
FT_Long d;
|
|
|
|
|
|
s = 1;
|
|
if ( a < 0 ) { a = -a; s = -1; }
|
|
if ( b < 0 ) { b = -b; s = -s; }
|
|
if ( c < 0 ) { c = -c; s = -s; }
|
|
|
|
d = (FT_Long)( c > 0 ? (FT_Int64)a * b / c
|
|
: 0x7FFFFFFFL );
|
|
|
|
return ( s > 0 ) ? d : -d;
|
|
}
|
|
|
|
#endif /* TT_USE_BYTECODE_INTERPRETER */
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_MulFix( FT_Long a,
|
|
FT_Long b )
|
|
{
|
|
#ifdef FT_MULFIX_ASSEMBLER
|
|
|
|
return FT_MULFIX_ASSEMBLER( a, b );
|
|
|
|
#else
|
|
|
|
FT_Int s = 1;
|
|
FT_Long c;
|
|
|
|
|
|
if ( a < 0 )
|
|
{
|
|
a = -a;
|
|
s = -1;
|
|
}
|
|
|
|
if ( b < 0 )
|
|
{
|
|
b = -b;
|
|
s = -s;
|
|
}
|
|
|
|
c = (FT_Long)( ( (FT_Int64)a * b + 0x8000L ) >> 16 );
|
|
|
|
return ( s > 0 ) ? c : -c;
|
|
|
|
#endif /* FT_MULFIX_ASSEMBLER */
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_DivFix( FT_Long a,
|
|
FT_Long b )
|
|
{
|
|
FT_Int32 s;
|
|
FT_UInt32 q;
|
|
|
|
s = 1;
|
|
if ( a < 0 ) { a = -a; s = -1; }
|
|
if ( b < 0 ) { b = -b; s = -s; }
|
|
|
|
if ( b == 0 )
|
|
/* check for division by 0 */
|
|
q = 0x7FFFFFFFL;
|
|
else
|
|
/* compute result directly */
|
|
q = (FT_UInt32)( ( ( (FT_Int64)a << 16 ) + ( b >> 1 ) ) / b );
|
|
|
|
return ( s < 0 ? -(FT_Long)q : (FT_Long)q );
|
|
}
|
|
|
|
|
|
#else /* !FT_LONG64 */
|
|
|
|
|
|
static void
|
|
ft_multo64( FT_UInt32 x,
|
|
FT_UInt32 y,
|
|
FT_Int64 *z )
|
|
{
|
|
FT_UInt32 lo1, hi1, lo2, hi2, lo, hi, i1, i2;
|
|
|
|
|
|
lo1 = x & 0x0000FFFFU; hi1 = x >> 16;
|
|
lo2 = y & 0x0000FFFFU; hi2 = y >> 16;
|
|
|
|
lo = lo1 * lo2;
|
|
i1 = lo1 * hi2;
|
|
i2 = lo2 * hi1;
|
|
hi = hi1 * hi2;
|
|
|
|
/* Check carry overflow of i1 + i2 */
|
|
i1 += i2;
|
|
hi += (FT_UInt32)( i1 < i2 ) << 16;
|
|
|
|
hi += i1 >> 16;
|
|
i1 = i1 << 16;
|
|
|
|
/* Check carry overflow of i1 + lo */
|
|
lo += i1;
|
|
hi += ( lo < i1 );
|
|
|
|
z->lo = lo;
|
|
z->hi = hi;
|
|
}
|
|
|
|
|
|
static FT_UInt32
|
|
ft_div64by32( FT_UInt32 hi,
|
|
FT_UInt32 lo,
|
|
FT_UInt32 y )
|
|
{
|
|
FT_UInt32 r, q;
|
|
FT_Int i;
|
|
|
|
|
|
q = 0;
|
|
r = hi;
|
|
|
|
if ( r >= y )
|
|
return (FT_UInt32)0x7FFFFFFFL;
|
|
|
|
i = 32;
|
|
do
|
|
{
|
|
r <<= 1;
|
|
q <<= 1;
|
|
r |= lo >> 31;
|
|
|
|
if ( r >= (FT_UInt32)y )
|
|
{
|
|
r -= y;
|
|
q |= 1;
|
|
}
|
|
lo <<= 1;
|
|
} while ( --i );
|
|
|
|
return q;
|
|
}
|
|
|
|
|
|
static void
|
|
FT_Add64( FT_Int64* x,
|
|
FT_Int64* y,
|
|
FT_Int64 *z )
|
|
{
|
|
register FT_UInt32 lo, hi;
|
|
|
|
|
|
lo = x->lo + y->lo;
|
|
hi = x->hi + y->hi + ( lo < x->lo );
|
|
|
|
z->lo = lo;
|
|
z->hi = hi;
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
/* The FT_MulDiv function has been optimized thanks to ideas from */
|
|
/* Graham Asher. The trick is to optimize computation when everything */
|
|
/* fits within 32-bits (a rather common case). */
|
|
/* */
|
|
/* we compute 'a*b+c/2', then divide it by 'c'. (positive values) */
|
|
/* */
|
|
/* 46340 is FLOOR(SQRT(2^31-1)). */
|
|
/* */
|
|
/* if ( a <= 46340 && b <= 46340 ) then ( a*b <= 0x7FFEA810 ) */
|
|
/* */
|
|
/* 0x7FFFFFFF - 0x7FFEA810 = 0x157F0 */
|
|
/* */
|
|
/* if ( c < 0x157F0*2 ) then ( a*b+c/2 <= 0x7FFFFFFF ) */
|
|
/* */
|
|
/* and 2*0x157F0 = 176096 */
|
|
/* */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_MulDiv( FT_Long a,
|
|
FT_Long b,
|
|
FT_Long c )
|
|
{
|
|
long s;
|
|
|
|
|
|
if ( a == 0 || b == c )
|
|
return a;
|
|
|
|
s = a; a = FT_ABS( a );
|
|
s ^= b; b = FT_ABS( b );
|
|
s ^= c; c = FT_ABS( c );
|
|
|
|
if ( a <= 46340L && b <= 46340L && c <= 176095L && c > 0 )
|
|
a = ( a * b + ( c >> 1 ) ) / c;
|
|
|
|
else if ( c > 0 )
|
|
{
|
|
FT_Int64 temp, temp2;
|
|
|
|
|
|
ft_multo64( a, b, &temp );
|
|
|
|
temp2.hi = 0;
|
|
temp2.lo = (FT_UInt32)(c >> 1);
|
|
FT_Add64( &temp, &temp2, &temp );
|
|
a = ft_div64by32( temp.hi, temp.lo, c );
|
|
}
|
|
else
|
|
a = 0x7FFFFFFFL;
|
|
|
|
return ( s < 0 ? -a : a );
|
|
}
|
|
|
|
|
|
#ifdef TT_USE_BYTECODE_INTERPRETER
|
|
|
|
FT_BASE_DEF( FT_Long )
|
|
FT_MulDiv_No_Round( FT_Long a,
|
|
FT_Long b,
|
|
FT_Long c )
|
|
{
|
|
long s;
|
|
|
|
|
|
if ( a == 0 || b == c )
|
|
return a;
|
|
|
|
s = a; a = FT_ABS( a );
|
|
s ^= b; b = FT_ABS( b );
|
|
s ^= c; c = FT_ABS( c );
|
|
|
|
if ( a <= 46340L && b <= 46340L && c > 0 )
|
|
a = a * b / c;
|
|
|
|
else if ( c > 0 )
|
|
{
|
|
FT_Int64 temp;
|
|
|
|
|
|
ft_multo64( a, b, &temp );
|
|
a = ft_div64by32( temp.hi, temp.lo, c );
|
|
}
|
|
else
|
|
a = 0x7FFFFFFFL;
|
|
|
|
return ( s < 0 ? -a : a );
|
|
}
|
|
|
|
#endif /* TT_USE_BYTECODE_INTERPRETER */
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_MulFix( FT_Long a,
|
|
FT_Long b )
|
|
{
|
|
#ifdef FT_MULFIX_ASSEMBLER
|
|
|
|
return FT_MULFIX_ASSEMBLER( a, b );
|
|
|
|
#elif 0
|
|
|
|
/*
|
|
* This code is nonportable. See comment below.
|
|
*
|
|
* However, on a platform where right-shift of a signed quantity fills
|
|
* the leftmost bits by copying the sign bit, it might be faster.
|
|
*/
|
|
|
|
FT_Long sa, sb;
|
|
FT_ULong ua, ub;
|
|
|
|
|
|
if ( a == 0 || b == 0x10000L )
|
|
return a;
|
|
|
|
/*
|
|
* This is a clever way of converting a signed number `a' into its
|
|
* absolute value (stored back into `a') and its sign. The sign is
|
|
* stored in `sa'; 0 means `a' was positive or zero, and -1 means `a'
|
|
* was negative. (Similarly for `b' and `sb').
|
|
*
|
|
* Unfortunately, it doesn't work (at least not portably).
|
|
*
|
|
* It makes the assumption that right-shift on a negative signed value
|
|
* fills the leftmost bits by copying the sign bit. This is wrong.
|
|
* According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206,
|
|
* the result of right-shift of a negative signed value is
|
|
* implementation-defined. At least one implementation fills the
|
|
* leftmost bits with 0s (i.e., it is exactly the same as an unsigned
|
|
* right shift). This means that when `a' is negative, `sa' ends up
|
|
* with the value 1 rather than -1. After that, everything else goes
|
|
* wrong.
|
|
*/
|
|
sa = ( a >> ( sizeof ( a ) * 8 - 1 ) );
|
|
a = ( a ^ sa ) - sa;
|
|
sb = ( b >> ( sizeof ( b ) * 8 - 1 ) );
|
|
b = ( b ^ sb ) - sb;
|
|
|
|
ua = (FT_ULong)a;
|
|
ub = (FT_ULong)b;
|
|
|
|
if ( ua <= 2048 && ub <= 1048576L )
|
|
ua = ( ua * ub + 0x8000U ) >> 16;
|
|
else
|
|
{
|
|
FT_ULong al = ua & 0xFFFFU;
|
|
|
|
|
|
ua = ( ua >> 16 ) * ub + al * ( ub >> 16 ) +
|
|
( ( al * ( ub & 0xFFFFU ) + 0x8000U ) >> 16 );
|
|
}
|
|
|
|
sa ^= sb,
|
|
ua = (FT_ULong)(( ua ^ sa ) - sa);
|
|
|
|
return (FT_Long)ua;
|
|
|
|
#else /* 0 */
|
|
|
|
FT_Long s;
|
|
FT_ULong ua, ub;
|
|
|
|
|
|
if ( a == 0 || b == 0x10000L )
|
|
return a;
|
|
|
|
s = a; a = FT_ABS( a );
|
|
s ^= b; b = FT_ABS( b );
|
|
|
|
ua = (FT_ULong)a;
|
|
ub = (FT_ULong)b;
|
|
|
|
if ( ua <= 2048 && ub <= 1048576L )
|
|
ua = ( ua * ub + 0x8000UL ) >> 16;
|
|
else
|
|
{
|
|
FT_ULong al = ua & 0xFFFFUL;
|
|
|
|
|
|
ua = ( ua >> 16 ) * ub + al * ( ub >> 16 ) +
|
|
( ( al * ( ub & 0xFFFFUL ) + 0x8000UL ) >> 16 );
|
|
}
|
|
|
|
return ( s < 0 ? -(FT_Long)ua : (FT_Long)ua );
|
|
|
|
#endif /* 0 */
|
|
|
|
}
|
|
|
|
|
|
/* documentation is in freetype.h */
|
|
|
|
FT_EXPORT_DEF( FT_Long )
|
|
FT_DivFix( FT_Long a,
|
|
FT_Long b )
|
|
{
|
|
FT_Int32 s;
|
|
FT_UInt32 q;
|
|
|
|
|
|
s = a; a = FT_ABS( a );
|
|
s ^= b; b = FT_ABS( b );
|
|
|
|
if ( b == 0 )
|
|
{
|
|
/* check for division by 0 */
|
|
q = 0x7FFFFFFFL;
|
|
}
|
|
else if ( ( a >> 16 ) == 0 )
|
|
{
|
|
/* compute result directly */
|
|
q = (FT_UInt32)( (a << 16) + (b >> 1) ) / (FT_UInt32)b;
|
|
}
|
|
else
|
|
{
|
|
/* we need more bits; we have to do it by hand */
|
|
FT_Int64 temp, temp2;
|
|
|
|
temp.hi = (FT_Int32) (a >> 16);
|
|
temp.lo = (FT_UInt32)(a << 16);
|
|
temp2.hi = 0;
|
|
temp2.lo = (FT_UInt32)( b >> 1 );
|
|
FT_Add64( &temp, &temp2, &temp );
|
|
q = ft_div64by32( temp.hi, temp.lo, b );
|
|
}
|
|
|
|
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
|
|
}
|
|
|
|
|
|
#if 0
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_EXPORT_DEF( void )
|
|
FT_MulTo64( FT_Int32 x,
|
|
FT_Int32 y,
|
|
FT_Int64 *z )
|
|
{
|
|
FT_Int32 s;
|
|
|
|
|
|
s = x; x = FT_ABS( x );
|
|
s ^= y; y = FT_ABS( y );
|
|
|
|
ft_multo64( x, y, z );
|
|
|
|
if ( s < 0 )
|
|
{
|
|
z->lo = (FT_UInt32)-(FT_Int32)z->lo;
|
|
z->hi = ~z->hi + !( z->lo );
|
|
}
|
|
}
|
|
|
|
|
|
/* apparently, the second version of this code is not compiled correctly */
|
|
/* on Mac machines with the MPW C compiler.. tsk, tsk, tsk... */
|
|
|
|
#if 1
|
|
|
|
FT_EXPORT_DEF( FT_Int32 )
|
|
FT_Div64by32( FT_Int64* x,
|
|
FT_Int32 y )
|
|
{
|
|
FT_Int32 s;
|
|
FT_UInt32 q, r, i, lo;
|
|
|
|
|
|
s = x->hi;
|
|
if ( s < 0 )
|
|
{
|
|
x->lo = (FT_UInt32)-(FT_Int32)x->lo;
|
|
x->hi = ~x->hi + !x->lo;
|
|
}
|
|
s ^= y; y = FT_ABS( y );
|
|
|
|
/* Shortcut */
|
|
if ( x->hi == 0 )
|
|
{
|
|
if ( y > 0 )
|
|
q = x->lo / y;
|
|
else
|
|
q = 0x7FFFFFFFL;
|
|
|
|
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
|
|
}
|
|
|
|
r = x->hi;
|
|
lo = x->lo;
|
|
|
|
if ( r >= (FT_UInt32)y ) /* we know y is to be treated as unsigned here */
|
|
return ( s < 0 ? 0x80000001UL : 0x7FFFFFFFUL );
|
|
/* Return Max/Min Int32 if division overflow. */
|
|
/* This includes division by zero! */
|
|
q = 0;
|
|
for ( i = 0; i < 32; i++ )
|
|
{
|
|
r <<= 1;
|
|
q <<= 1;
|
|
r |= lo >> 31;
|
|
|
|
if ( r >= (FT_UInt32)y )
|
|
{
|
|
r -= y;
|
|
q |= 1;
|
|
}
|
|
lo <<= 1;
|
|
}
|
|
|
|
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
|
|
}
|
|
|
|
#else /* 0 */
|
|
|
|
FT_EXPORT_DEF( FT_Int32 )
|
|
FT_Div64by32( FT_Int64* x,
|
|
FT_Int32 y )
|
|
{
|
|
FT_Int32 s;
|
|
FT_UInt32 q;
|
|
|
|
|
|
s = x->hi;
|
|
if ( s < 0 )
|
|
{
|
|
x->lo = (FT_UInt32)-(FT_Int32)x->lo;
|
|
x->hi = ~x->hi + !x->lo;
|
|
}
|
|
s ^= y; y = FT_ABS( y );
|
|
|
|
/* Shortcut */
|
|
if ( x->hi == 0 )
|
|
{
|
|
if ( y > 0 )
|
|
q = ( x->lo + ( y >> 1 ) ) / y;
|
|
else
|
|
q = 0x7FFFFFFFL;
|
|
|
|
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
|
|
}
|
|
|
|
q = ft_div64by32( x->hi, x->lo, y );
|
|
|
|
return ( s < 0 ? -(FT_Int32)q : (FT_Int32)q );
|
|
}
|
|
|
|
#endif /* 0 */
|
|
|
|
#endif /* 0 */
|
|
|
|
|
|
#endif /* FT_LONG64 */
|
|
|
|
|
|
/* documentation is in ftglyph.h */
|
|
|
|
FT_EXPORT_DEF( void )
|
|
FT_Matrix_Multiply( const FT_Matrix* a,
|
|
FT_Matrix *b )
|
|
{
|
|
FT_Fixed xx, xy, yx, yy;
|
|
|
|
|
|
if ( !a || !b )
|
|
return;
|
|
|
|
xx = FT_MulFix( a->xx, b->xx ) + FT_MulFix( a->xy, b->yx );
|
|
xy = FT_MulFix( a->xx, b->xy ) + FT_MulFix( a->xy, b->yy );
|
|
yx = FT_MulFix( a->yx, b->xx ) + FT_MulFix( a->yy, b->yx );
|
|
yy = FT_MulFix( a->yx, b->xy ) + FT_MulFix( a->yy, b->yy );
|
|
|
|
b->xx = xx; b->xy = xy;
|
|
b->yx = yx; b->yy = yy;
|
|
}
|
|
|
|
|
|
/* documentation is in ftglyph.h */
|
|
|
|
FT_EXPORT_DEF( FT_Error )
|
|
FT_Matrix_Invert( FT_Matrix* matrix )
|
|
{
|
|
FT_Pos delta, xx, yy;
|
|
|
|
|
|
if ( !matrix )
|
|
return FT_Err_Invalid_Argument;
|
|
|
|
/* compute discriminant */
|
|
delta = FT_MulFix( matrix->xx, matrix->yy ) -
|
|
FT_MulFix( matrix->xy, matrix->yx );
|
|
|
|
if ( !delta )
|
|
return FT_Err_Invalid_Argument; /* matrix can't be inverted */
|
|
|
|
matrix->xy = - FT_DivFix( matrix->xy, delta );
|
|
matrix->yx = - FT_DivFix( matrix->yx, delta );
|
|
|
|
xx = matrix->xx;
|
|
yy = matrix->yy;
|
|
|
|
matrix->xx = FT_DivFix( yy, delta );
|
|
matrix->yy = FT_DivFix( xx, delta );
|
|
|
|
return FT_Err_Ok;
|
|
}
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( void )
|
|
FT_Matrix_Multiply_Scaled( const FT_Matrix* a,
|
|
FT_Matrix *b,
|
|
FT_Long scaling )
|
|
{
|
|
FT_Fixed xx, xy, yx, yy;
|
|
|
|
FT_Long val = 0x10000L * scaling;
|
|
|
|
|
|
if ( !a || !b )
|
|
return;
|
|
|
|
xx = FT_MulDiv( a->xx, b->xx, val ) + FT_MulDiv( a->xy, b->yx, val );
|
|
xy = FT_MulDiv( a->xx, b->xy, val ) + FT_MulDiv( a->xy, b->yy, val );
|
|
yx = FT_MulDiv( a->yx, b->xx, val ) + FT_MulDiv( a->yy, b->yx, val );
|
|
yy = FT_MulDiv( a->yx, b->xy, val ) + FT_MulDiv( a->yy, b->yy, val );
|
|
|
|
b->xx = xx; b->xy = xy;
|
|
b->yx = yx; b->yy = yy;
|
|
}
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( void )
|
|
FT_Vector_Transform_Scaled( FT_Vector* vector,
|
|
const FT_Matrix* matrix,
|
|
FT_Long scaling )
|
|
{
|
|
FT_Pos xz, yz;
|
|
|
|
FT_Long val = 0x10000L * scaling;
|
|
|
|
|
|
if ( !vector || !matrix )
|
|
return;
|
|
|
|
xz = FT_MulDiv( vector->x, matrix->xx, val ) +
|
|
FT_MulDiv( vector->y, matrix->xy, val );
|
|
|
|
yz = FT_MulDiv( vector->x, matrix->yx, val ) +
|
|
FT_MulDiv( vector->y, matrix->yy, val );
|
|
|
|
vector->x = xz;
|
|
vector->y = yz;
|
|
}
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( FT_Int32 )
|
|
FT_SqrtFixed( FT_Int32 x )
|
|
{
|
|
FT_UInt32 root, rem_hi, rem_lo, test_div;
|
|
FT_Int count;
|
|
|
|
|
|
root = 0;
|
|
|
|
if ( x > 0 )
|
|
{
|
|
rem_hi = 0;
|
|
rem_lo = x;
|
|
count = 24;
|
|
do
|
|
{
|
|
rem_hi = ( rem_hi << 2 ) | ( rem_lo >> 30 );
|
|
rem_lo <<= 2;
|
|
root <<= 1;
|
|
test_div = ( root << 1 ) + 1;
|
|
|
|
if ( rem_hi >= test_div )
|
|
{
|
|
rem_hi -= test_div;
|
|
root += 1;
|
|
}
|
|
} while ( --count );
|
|
}
|
|
|
|
return (FT_Int32)root;
|
|
}
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( FT_Int )
|
|
ft_corner_orientation( FT_Pos in_x,
|
|
FT_Pos in_y,
|
|
FT_Pos out_x,
|
|
FT_Pos out_y )
|
|
{
|
|
FT_Int result;
|
|
|
|
|
|
/* deal with the trivial cases quickly */
|
|
if ( in_y == 0 )
|
|
{
|
|
if ( in_x >= 0 )
|
|
result = out_y;
|
|
else
|
|
result = -out_y;
|
|
}
|
|
else if ( in_x == 0 )
|
|
{
|
|
if ( in_y >= 0 )
|
|
result = -out_x;
|
|
else
|
|
result = out_x;
|
|
}
|
|
else if ( out_y == 0 )
|
|
{
|
|
if ( out_x >= 0 )
|
|
result = in_y;
|
|
else
|
|
result = -in_y;
|
|
}
|
|
else if ( out_x == 0 )
|
|
{
|
|
if ( out_y >= 0 )
|
|
result = -in_x;
|
|
else
|
|
result = in_x;
|
|
}
|
|
else /* general case */
|
|
{
|
|
#ifdef FT_LONG64
|
|
|
|
FT_Int64 delta = (FT_Int64)in_x * out_y - (FT_Int64)in_y * out_x;
|
|
|
|
|
|
if ( delta == 0 )
|
|
result = 0;
|
|
else
|
|
result = 1 - 2 * ( delta < 0 );
|
|
|
|
#else
|
|
|
|
FT_Int64 z1, z2;
|
|
|
|
|
|
ft_multo64( in_x, out_y, &z1 );
|
|
ft_multo64( in_y, out_x, &z2 );
|
|
|
|
if ( z1.hi > z2.hi )
|
|
result = +1;
|
|
else if ( z1.hi < z2.hi )
|
|
result = -1;
|
|
else if ( z1.lo > z2.lo )
|
|
result = +1;
|
|
else if ( z1.lo < z2.lo )
|
|
result = -1;
|
|
else
|
|
result = 0;
|
|
|
|
#endif
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* documentation is in ftcalc.h */
|
|
|
|
FT_BASE_DEF( FT_Int )
|
|
ft_corner_is_flat( FT_Pos in_x,
|
|
FT_Pos in_y,
|
|
FT_Pos out_x,
|
|
FT_Pos out_y )
|
|
{
|
|
FT_Pos ax = in_x;
|
|
FT_Pos ay = in_y;
|
|
|
|
FT_Pos d_in, d_out, d_corner;
|
|
|
|
|
|
if ( ax < 0 )
|
|
ax = -ax;
|
|
if ( ay < 0 )
|
|
ay = -ay;
|
|
d_in = ax + ay;
|
|
|
|
ax = out_x;
|
|
if ( ax < 0 )
|
|
ax = -ax;
|
|
ay = out_y;
|
|
if ( ay < 0 )
|
|
ay = -ay;
|
|
d_out = ax + ay;
|
|
|
|
ax = out_x + in_x;
|
|
if ( ax < 0 )
|
|
ax = -ax;
|
|
ay = out_y + in_y;
|
|
if ( ay < 0 )
|
|
ay = -ay;
|
|
d_corner = ax + ay;
|
|
|
|
return ( d_in + d_out - d_corner ) < ( d_corner >> 4 );
|
|
}
|
|
|
|
|
|
/* END */
|