at last, the bug seems to be solved. Now, the source code

should be cleaned up, and we'll be done with the raster :o)
This commit is contained in:
David Turner 2000-05-04 16:36:34 +00:00
parent 8ee071a0fc
commit 08c3875589

@ -191,6 +191,7 @@
/* used to access the current raster object, with a '.' instead of a '->' */
#define ras (*raster)
#define UNUSED_RASTER (void)raster;
/* For anti-aliasing modes, we use a 2 or 4 lines intermediate bitmap which */
/* is filtered repeatedly to render each pixmap row. The following macro */
@ -1023,54 +1024,55 @@
b = base[1].y = ( base[0].y + b )/2;
base[2].y = (a+b)/2;
}
#endif
#ifdef FT_RASTER_CUBIC_BEZIERS
/****************************************************************************/
/* */
/* <Function> Push_Conic */
/* <Function> Split_Cubic */
/* */
/* <Description> Clears the Bezier stack and pushes a new arc on top of it */
/* */
/* <Input> */
/* p2 :: pointer to second (control) point */
/* p3 :: pointer to third (end) point */
/* <Description> */
/* Subdivides a third-order Bezier arc into two joint sub-arcs in the */
/* Bezier stack. */
/* */
/* <Note> */
/* The first point is taken as "raster->last", so it doesn't appear */
/* in the signature.. */
/* This routine is the "beef" of the component. It is one of _the_ */
/* inner loops that should be optimized like hell to get the best */
/* performance.. */
/* */
/****************************************************************************/
static
void Push_Conic( RAS_ARGS FT_Vector* p2,
FT_Vector* p3 )
void Split_Cubic( TPoint* base )
{
#undef STORE
#define STORE( _arc, point ) \
{ \
TPos x = SCALED(point->x); \
TPos y = SCALED(point->y); \
if (ras.flipped) \
{ \
_arc.x = y; \
_arc.y = x; \
} \
else \
{ \
_arc.x = x; \
_arc.y = y; \
} \
}
TPos a, b, c, d;
TPoint* arc;
ras.arc = arc = ras.arcs;
arc[2] = ras.last;
STORE( arc[1], p2 );
STORE( arc[0], p3 );
#undef STORE
base[6].x = base[3].x;
c = base[1].x;
d = base[2].x;
base[1].x = a = ( base[0].x + c )/2;
base[5].x = b = ( base[3].x + d )/2;
c = (c+d)/2;
base[2].x = a = (a+c)/2;
base[4].x = b = (b+c)/2;
base[3].x = (a+b)/2;
base[6].y = base[3].y;
c = base[1].y;
d = base[2].y;
base[1].y = a = ( base[0].y + c )/2;
base[5].y = b = ( base[3].y + d )/2;
c = (c+d)/2;
base[2].y = a = (a+c)/2;
base[4].y = b = (b+c)/2;
base[3].y = (a+b)/2;
}
#endif
#ifdef FT_RASTER_CONIC_BEZIERS
/****************************************************************************/
/* */
/* <Function> Conic_Up */
@ -1251,100 +1253,6 @@
#ifdef FT_RASTER_CUBIC_BEZIERS
/****************************************************************************/
/* */
/* <Function> Split_Cubic */
/* */
/* <Description> */
/* Subdivides a third-order Bezier arc into two joint sub-arcs in the */
/* Bezier stack. */
/* */
/* <Note> */
/* This routine is the "beef" of the component. It is one of _the_ */
/* inner loops that should be optimized like hell to get the best */
/* performance.. */
/* */
/****************************************************************************/
static
void Split_Cubic( TPoint* base )
{
TPos a, b, c, d;
base[6].x = base[3].x;
c = base[1].x;
d = base[2].x;
base[1].x = a = ( base[0].x + c )/2;
base[5].x = b = ( base[3].x + d )/2;
c = (c+d)/2;
base[2].x = a = (a+c)/2;
base[4].x = b = (b+c)/2;
base[3].x = (a+b)/2;
base[6].y = base[3].y;
c = base[1].y;
d = base[2].y;
base[1].y = a = ( base[0].y + c )/2;
base[5].y = b = ( base[3].y + d )/2;
c = (c+d)/2;
base[2].y = a = (a+c)/2;
base[4].y = b = (b+c)/2;
base[3].y = (a+b)/2;
}
/****************************************************************************/
/* */
/* <Function> Push_Cubic */
/* */
/* <Description> */
/* Clears the bezier stack and pushes a new third-order bezier arc */
/* on top of it */
/* */
/* <Input> */
/* p2 :: pointer to second point (control) */
/* p3 :: pointer to third point (control) */
/* p4 :: pointer to last point (end) */
/* */
/* <Note> */
/* The first point is taken as "raster->last", so it doesn't appear */
/* in the signature.. */
/* */
/****************************************************************************/
static
void Push_Cubic( RAS_ARGS FT_Vector* p2,
FT_Vector* p3,
FT_Vector* p4 )
{
#undef STORE
#define STORE( _arc, point ) \
{ \
TPos x = SCALED(point->x); \
TPos y = SCALED(point->y); \
if (ras.flipped) \
{ \
_arc.x = y; \
_arc.y = x; \
} \
else \
{ \
_arc.x = x; \
_arc.y = y; \
} \
}
TPoint* arc;
ras.arc = arc = ras.arcs;
arc[3] = ras.last;
STORE( arc[2], p2 );
STORE( arc[1], p3 );
STORE( arc[0], p4 );
#undef STORE
}
/****************************************************************************/
/* */
/* <Function> Cubic_Up */
@ -1519,6 +1427,285 @@
#endif /* FT_RASTER_CUBIC_BEZIERS */
/* A function type describing the functions used to split bezier arcs */
typedef void (*TSplitter)( TPoint* base );
#ifdef FT_DYNAMIC_BEZIER_STEPS
static
TPos Dynamic_Bezier_Threshold( RAS_ARGS int degree, TPoint* arc )
{
TPos min_x, max_x, min_y, max_y, A, B;
TPos wide_x, wide_y, threshold;
TPoint* cur = arc;
TPoint* limit = cur + degree;
/* first of all, set the threshold to the maximum x or y extent */
min_x = max_x = arc[0].x;
min_y = max_y = arc[0].y;
cur++;
for ( ; cur < limit; cur++ )
{
TPos x = cur->x;
TPos y = cur->y;
if ( x < min_x ) min_x = x;
if ( x > max_x ) max_x = x;
if ( y < min_y ) min_y = y;
if ( y > max_y ) max_y = y;
}
wide_x = (max_x - min_x) << 4;
wide_y = (max_y - min_y) << 4;
threshold = wide_x;
if (threshold < wide_y) threshold = wide_y;
/* now compute the second and third order error values */
wide_x = arc[0].x + arc[1].x - arc[2].x*2;
wide_y = arc[0].y + arc[1].y - arc[2].y*2;
if (wide_x < 0) wide_x = -wide_x;
if (wide_y < 0) wide_y = -wide_y;
A = wide_x; if ( A < wide_y ) A = wide_y;
if (degree >= 3)
{
wide_x = arc[3].x - arc[0].x + 3*(arc[2].x - arc[3].x);
wide_y = arc[3].y - arc[0].y + 3*(arc[2].y - arc[3].y);
if (wide_x < 0) wide_x = -wide_x;
if (wide_y < 0) wide_y = -wide_y;
B = wide_x; if ( B < wide_y ) B = wide_y;
}
else
B = 0;
while ( A > 0 || B > 0 )
{
threshold >>= 1;
A >>= 2;
B >>= 3;
}
if (threshold < PRECISION_STEP)
threshold = PRECISION_STEP;
return threshold;
}
#endif
/*************************************************************************/
/* */
/* <Function> */
/* Bezier_Up */
/* */
/* <Description> */
/* Computes the scan-line intersections of an ascending second-order */
/* Bezier arc and stores them in the render pool. The arc is taken */
/* from the top of the stack. */
/* */
/* <Input> */
/* miny :: The minimum vertical grid coordinate. */
/* maxy :: The maximum vertical grid coordinate. */
/* */
/* <Return> */
/* SUCCESS or FAILURE. */
/* */
static
TBool Bezier_Up( RAS_ARGS int degree,
TSplitter splitter,
TPos miny,
TPos maxy )
{
TPos y1, y2, e, e2, e0, threshold;
int f1;
TPoint* arc;
TPoint* start_arc;
PPos top;
arc = ras.arc;
y1 = arc[degree].y;
y2 = arc[0].y;
top = ras.cursor;
if ( y2 < miny || y1 > maxy )
goto Fin;
e2 = FLOOR( y2 ); /* integer end y */
if ( e2 > maxy )
e2 = maxy;
e0 = miny;
if ( y1 < miny )
{
e = e0; /* integer start y == current scanline */
}
else
{
e = CEILING( y1 ); /* integer start y == current scanline */
f1 = FRAC( y1 ); /* fractional shift of start y */
e0 = e; /* first integer scanline to be pushed */
if ( f1 == 0 ) /* do we start on an integer scanline? */
{
if ( ras.joint )
{
top--;
ras.joint = FALSE;
}
*top++ = arc[degree].x; /* write directly start position */
DEBUG_PSET;
e += ras.precision; /* go to next scanline */
}
}
/* record start position if necessary */
if ( ras.fresh )
{
ras.cur_prof->start = TRUNC( e0 );
ras.fresh = FALSE;
}
/* exit if the current scanline is already above the max scanline */
if ( e2 < e )
goto Fin;
/* check for overflow */
if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.pool_limit )
{
ras.cursor = top;
ras.error = ErrRaster_Overflow;
return FAILURE;
}
#ifdef FT_DYNAMIC_BEZIER_STEPS
/* compute dynamic bezier step threshold */
threshold = Dynamic_Bezier_Threshold( RAS_VAR_ degree, arc );
#else
threshold = ras.precision_step;
#endif
start_arc = arc;
/* loop while there is still an arc on the bezier stack */
/* and the current scan line is below y max == e2 */
while ( arc >= start_arc && e <= e2 )
{
ras.joint = FALSE;
y2 = arc[0].y; /* final y of the top-most arc */
if ( y2 > e ) /* the arc intercepts the current scanline */
{
y1 = arc[degree].y; /* start y of top-most arc */
#ifdef OLD
if ( y2-y1 >= ras.precision_step )
#else
if ( y2 >= e + ras.precision || y2 - y1 >= threshold )
#endif
{
/* if the arc's height is too great, split it */
splitter( arc );
arc += degree;
}
else
{
/* otherwise, approximate it as a segment and compute */
/* its intersection with the current scanline */
*top++ = arc[degree].x +
FMulDiv( arc[0].x-arc[degree].x,
e - y1,
y2 - y1 );
DEBUG_PSET;
arc -= degree; /* pop the arc */
e += ras.precision; /* go to next scanline */
}
}
else
{
if ( y2 == e ) /* if the arc falls on the scanline */
{ /* record its _joint_ intersection */
ras.joint = TRUE;
*top++ = arc[0].x;
DEBUG_PSET;
e += ras.precision; /* go to next scanline */
}
arc -= degree; /* pop the arc */
}
}
Fin:
ras.cursor = top;
ras.arc -= degree;
return SUCCESS;
}
/*************************************************************************/
/* */
/* <Function> */
/* Bezier_Down */
/* */
/* <Description> */
/* Computes the scan-line intersections of a descending second-order */
/* Bezier arc and stores them in the render pool. The arc is taken */
/* from the top of the stack. */
/* */
/* <Input> */
/* miny :: The minimum vertical grid coordinate. */
/* maxy :: The maximum vertical grid coordinate. */
/* */
/* <Return> */
/* SUCCESS or FAILURE. */
/* */
static
TBool Bezier_Down( RAS_ARGS int degree,
TSplitter splitter,
TPos miny,
TPos maxy )
{
TPoint* arc = ras.arc;
TBool result, fresh;
arc[0].y = -arc[0].y;
arc[1].y = -arc[1].y;
arc[2].y = -arc[2].y;
if (degree > 2)
arc[3].y = -arc[3].y;
fresh = ras.fresh;
result = Bezier_Up( RAS_VARS degree, splitter, -maxy, -miny );
if ( fresh && !ras.fresh )
ras.cur_prof->start = -ras.cur_prof->start;
arc[0].y = -arc[0].y;
return result;
}
/****************************************************************************/
/* */
/* <Function> Check_Contour */
@ -1586,13 +1773,13 @@
/* set the "current last point" */
if (ras.flipped)
{
ras.last.x = SCALED( to->y );
ras.last.y = SCALED( to->x );
ras.last.x = to->y;
ras.last.y = to->x;
}
else
{
ras.last.x = SCALED( to->x );
ras.last.y = SCALED( to->y );
ras.last.x = to->x;
ras.last.y = to->y;
}
ras.state = Unknown;
@ -1626,83 +1813,50 @@
int Line_To( FT_Vector* to,
FT_Raster raster )
{
TPos x;
TPos y;
TPos x;
TPos y;
TDirection new_state;
if ( ras.flipped )
{
x = SCALED(to->y);
y = SCALED(to->x);
x = to->y;
y = to->x;
}
else
{
x = SCALED(to->x);
y = SCALED(to->y);
x = to->x;
y = to->y;
}
/* First, detect a change of direction */
switch ( ras.state )
if ( y != ras.last.y )
{
case Unknown:
if ( y > ras.last.y )
new_state = ( y > ras.last.y ? Ascending : Descending );
if (new_state != ras.state)
{
if ( New_Profile( RAS_VARS Ascending ) ) return FAILURE;
if (ras.state != Unknown && End_Profile( RAS_VAR ))
goto Fail;
if ( New_Profile( RAS_VARS new_state) )
goto Fail;
}
else
{
if ( y < ras.last.y )
if ( New_Profile( RAS_VARS Descending ) ) return FAILURE;
}
break;
case Ascending:
if ( y < ras.last.y )
{
if ( End_Profile( RAS_VAR ) ||
New_Profile( RAS_VARS Descending ) ) return FAILURE;
}
break;
case Descending:
if ( y > ras.last.y )
{
if ( End_Profile( RAS_VAR ) ||
New_Profile( RAS_VARS Ascending ) ) return FAILURE;
}
break;
default:
;
}
/* Then compute the lines */
switch ( ras.state )
{
case Ascending:
if ( Line_Up ( RAS_VARS ras.last.x, ras.last.y,
x, y, ras.minY, ras.maxY ) )
return FAILURE;
break;
case Descending:
if ( Line_Down( RAS_VARS ras.last.x, ras.last.y,
x, y, ras.minY, ras.maxY ) )
return FAILURE;
break;
default:
;
}
if ( (ras.state == Ascending ? Line_Up : Line_Down)
( RAS_VARS ras.last.x, ras.last.y, x, y, ras.minY, ras.maxY ) )
goto Fail;
ras.last.x = x;
ras.last.y = y;
return SUCCESS;
Fail:
return FAILURE;
}
#ifdef FT_RASTER_CONIC_BEZIERS
/****************************************************************************/
/* */
/* <Function> Conic_To */
@ -1725,6 +1879,37 @@
/* */
/****************************************************************************/
static
void Push_Conic( RAS_ARGS FT_Vector* p2,
FT_Vector* p3 )
{
#undef STORE
#define STORE( _arc, point ) \
{ \
TPos x = point->x; \
TPos y = point->y; \
if (ras.flipped) \
{ \
_arc.x = y; \
_arc.y = x; \
} \
else \
{ \
_arc.x = x; \
_arc.y = y; \
} \
}
TPoint* arc;
ras.arc = arc = ras.arcs;
arc[2] = ras.last;
STORE( arc[1], p2 );
STORE( arc[0], p3 );
#undef STORE
}
static
int Conic_To( FT_Vector* control,
FT_Vector* to,
@ -1786,28 +1971,17 @@
if ( ras.state != state_bez )
{
if ( ras.state != Unknown )
if ( End_Profile( RAS_VAR ) ) return FAILURE;
if ( ras.state != Unknown && End_Profile( RAS_VAR ) )
goto Fail;
if ( New_Profile( RAS_VARS state_bez ) ) return FAILURE;
if ( New_Profile( RAS_VARS state_bez ) )
goto Fail;
}
/* compute intersections */
switch ( ras.state )
{
case Ascending:
if ( Conic_Up ( RAS_VARS ras.minY, ras.maxY ) )
return FAILURE;
break;
case Descending:
if ( Conic_Down( RAS_VARS ras.minY, ras.maxY ) )
return FAILURE;
break;
default:
;
}
if ( (ras.state == Ascending ? Bezier_Up : Bezier_Down)
( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
goto Fail;
}
} while ( ras.arc >= ras.arcs );
@ -1815,6 +1989,8 @@
ras.last.y = y3;
return 0;
Fail:
return FAILURE;
}
#else
@ -1856,6 +2032,40 @@
/* */
/****************************************************************************/
static
void Push_Cubic( RAS_ARGS FT_Vector* p2,
FT_Vector* p3,
FT_Vector* p4 )
{
#undef STORE
#define STORE( _arc, point ) \
{ \
TPos x = point->x; \
TPos y = point->y; \
if (ras.flipped) \
{ \
_arc.x = y; \
_arc.y = x; \
} \
else \
{ \
_arc.x = x; \
_arc.y = y; \
} \
}
TPoint* arc;
ras.arc = arc = ras.arcs;
arc[3] = ras.last;
STORE( arc[2], p2 );
STORE( arc[1], p3 );
STORE( arc[0], p4 );
#undef STORE
}
static
int Cubic_To( FT_Vector* control1,
FT_Vector* control2,
@ -1918,29 +2128,17 @@
if ( ras.state != state_bez )
{
if ( ras.state != Unknown )
if ( End_Profile( RAS_VAR ) ) return FAILURE;
if ( ras.state != Unknown && End_Profile( RAS_VAR ) )
goto Fail;
if ( New_Profile( RAS_VARS state_bez ) ) return FAILURE;
if ( New_Profile( RAS_VARS state_bez ) )
goto Fail;
}
/* compute */
switch ( ras.state )
{
case Ascending:
if ( Cubic_Up ( RAS_VARS ras.minY, ras.maxY ) )
return FAILURE;
break;
case Descending:
if ( Cubic_Down( RAS_VARS ras.minY, ras.maxY ) )
return FAILURE;
break;
default:
;
}
/* compute intersections */
if ( (ras.state == Ascending ? Bezier_Up : Bezier_Down)
( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
goto Fail;
}
} while ( ras.arc >= ras.arcs );
@ -1948,6 +2146,8 @@
ras.last.y = y4;
return 0;
Fail:
return FAILURE;
}
#else
@ -1991,7 +2191,9 @@
(FT_Outline_MoveTo_Func)Move_To,
(FT_Outline_LineTo_Func)Line_To,
(FT_Outline_ConicTo_Func)Conic_To,
(FT_Outline_CubicTo_Func)Cubic_To
(FT_Outline_CubicTo_Func)Cubic_To,
0,
0
};
/* Set up state in the raster object */
@ -2007,6 +2209,9 @@
ras.cur_prof->offset = ras.cursor;
ras.num_profs = 0;
interface.shift = ras.scale_shift;
interface.delta = ras.precision_half;
/* Now decompose curve */
if ( FT_Outline_Decompose( outline, &interface, &ras ) ) return FAILURE;
/* XXX : the error condition is in ras.error */
@ -2202,6 +2407,8 @@
{
long pitch = ras.target.pitch;
(void)max;
ras.trace_incr = -pitch;
ras.trace_bit = -*min*pitch;
if (pitch > 0)
@ -2236,6 +2443,7 @@
TByte* target;
/* Drop-out control */
(void)y;
e1 = TRUNC( CEILING( x1 ) );
if ( x2-x1-ras.precision <= ras.precision_jitter )
@ -2296,7 +2504,7 @@
int x )
{
int c1 = x >> 3;
(void)y;
return ( x >= 0 && x < ras.bit_width &&
ras.bit_buffer[ras.trace_bit + c1] & (0x80 >> (x & 7)) );
}
@ -2322,7 +2530,8 @@
int color )
{
(void)color; /* unused here */
(void)y;
if ( x >= 0 && x < ras.bit_width )
{
int c1 = x >> 3;
@ -2378,6 +2587,9 @@
static void Horizontal_Sweep_Init( RAS_ARGS int* min, int* max )
{
/* nothing, really */
UNUSED_RASTER
(void)min;
(void)max;
}
@ -2405,6 +2617,7 @@
PByte bits;
TByte f1;
(void)y;
/* During the horizontal sweep, we only take care of drop-outs */
if ( x2-x1 < ras.precision )
@ -2509,6 +2722,7 @@
static void Horizontal_Sweep_Step( RAS_ARG )
{
/* Nothing, really */
UNUSED_RASTER;
}
@ -2650,6 +2864,8 @@
int f1 = x & 3;
int mask = (0x80 >> f1) >> ((y & 1)*4);
(void)y;
return ( x >= 0 &&
x < ras.bit_width &&
ras.bit_buffer[c1] & mask );
@ -2662,6 +2878,7 @@
int color )
{
(void)color; /* unused here */
(void)y;
if ( x >= 0 && x < ras.bit_width )
{
@ -2769,6 +2986,7 @@
TPos x2 )
{
/* nothing, really */
UNUSED_RASTER
(void)y;
(void)x1;
(void)x2;
@ -2780,6 +2998,7 @@
int x )
{
/* don't do anything here */
UNUSED_RASTER
(void)x;
(void)y;
@ -3046,6 +3265,7 @@
TPos x2 )
{
/* nothing, really */
UNUSED_RASTER
(void)y;
(void)x1;
(void)x2;
@ -3057,6 +3277,7 @@
int x )
{
/* don't do anything here */
UNUSED_RASTER
(void)x;
(void)y;
@ -3417,12 +3638,16 @@ Scan_DropOuts :
while ( ras.band_top >= 0 )
{
#if 1
ras.maxY = (long)ras.band_stack[ras.band_top].y_max * ras.precision;
ras.minY = (long)ras.band_stack[ras.band_top].y_min * ras.precision;
#else
ras.maxY = ((long)ras.band_stack[ras.band_top].y_max <<
(ras.scale_shift+6))-1;
ras.minY = (long)ras.band_stack[ras.band_top].y_min <<
(ras.scale_shift+6);
#endif
ras.cursor = ras.pool;
ras.error = 0;
@ -3516,7 +3741,7 @@ Scan_DropOuts :
/* Vertical Sweep */
ras.band_top = 0;
ras.band_stack[0].y_min = 0;
ras.band_stack[0].y_max = ras.target.rows;
ras.band_stack[0].y_max = ras.target.rows - 1;
ras.Proc_Sweep_Init = Vertical_Sweep_Init;
ras.Proc_Sweep_Span = Vertical_Sweep_Span;