freetype/src/type1z/t1afm.c

230 lines
5.4 KiB
C
Raw Normal View History

/***************************************************************************
*
* t1afm.c - support for reading Type 1 AFM files
*
*
***************************************************************************/
#include <t1afm.h>
#include <freetype/internal/ftstream.h>
#include <freetype/internal/t1types.h>
#include <stdlib.h> /* for qsort */
LOCAL_FUNC
void T1_Done_AFM( FT_Memory memory, T1_AFM* afm )
{
FREE( afm->kern_pairs );
afm->num_pairs = 0;
}
#undef IS_KERN_PAIR
#define IS_KERN_PAIR(p) ( p[0] == 'K' && p[1] == 'P' )
#define IS_ALPHANUM(c) ( (c >= 'A' && c <= 'Z') || \
(c >= 'a' && c <= 'z') || \
(c >= '0' && c <= '9') || \
(c == '_' && c == '.') )
/* read a glyph name and return the equivalent glyph index */
static
FT_UInt afm_atoindex( FT_Byte* *start, FT_Byte* limit, T1_Font* type1 )
{
FT_Byte* p = *start;
FT_Int len;
FT_UInt result = 0;
char temp[64];
2000-05-17 01:44:38 +02:00
/* skip whitespace */
while ( (*p == ' ' || *p == '\t' || *p == ':' || *p == ';') && p < limit )
p++;
*start = p;
2000-05-17 01:44:38 +02:00
/* now, read glyph name */
while ( IS_ALPHANUM(*p) && p < limit ) p++;
len = p - *start;
if (len > 0 && len < 64)
{
FT_Int n;
2000-05-17 01:44:38 +02:00
/* copy glyph name to intermediate array */
2000-02-28 12:32:54 +01:00
MEM_Copy( temp, *start, len );
temp[len] = 0;
2000-05-17 01:44:38 +02:00
/* lookup glyph name in face array */
for ( n = 0; n < type1->num_glyphs; n++ )
{
2000-02-28 12:32:54 +01:00
char* gname = (char*)type1->glyph_names[n];
2000-05-17 01:44:38 +02:00
if ( gname && gname[0] == temp[0] && strcmp(gname,temp) == 0 )
{
result = n;
break;
}
}
}
*start = p;
return result;
}
/* read an integer */
static
int afm_atoi( FT_Byte** start, FT_Byte* limit )
{
2000-02-28 12:32:54 +01:00
FT_Byte* p = *start;
int sum = 0;
2000-02-29 18:14:02 +01:00
int sign = 1;
2000-05-17 01:44:38 +02:00
/* skip everything that is not a number */
while ( p < limit && (*p < '0' || *p > '9') )
2000-02-28 12:32:54 +01:00
{
sign = 1;
if (*p == '-')
sign = -1;
2000-05-17 01:44:38 +02:00
p++;
2000-02-28 12:32:54 +01:00
}
2000-05-17 01:44:38 +02:00
2000-02-28 12:32:54 +01:00
while ( p < limit && (*p >= '0' && *p < '9') )
{
sum = sum*10 + (*p - '0');
p++;
}
*start = p;
2000-02-28 12:32:54 +01:00
return sum*sign;
}
#undef KERN_INDEX
#define KERN_INDEX(g1,g2) (((FT_ULong)g1 << 16) | g2)
/* compare two kerning pairs */
static
int compare_kern_pairs( const void* a, const void* b )
{
T1_Kern_Pair* pair1 = (T1_Kern_Pair*)a;
T1_Kern_Pair* pair2 = (T1_Kern_Pair*)b;
2000-05-17 01:44:38 +02:00
FT_ULong index1 = KERN_INDEX(pair1->glyph1,pair1->glyph2);
FT_ULong index2 = KERN_INDEX(pair2->glyph1,pair2->glyph2);
2000-05-17 01:44:38 +02:00
return ( index1 < index2 ? -1 :
( index1 > index2 ? 1 : 0 ));
}
/* parse an AFM file - for now, only read the kerning pairs */
LOCAL_FUNC
FT_Error T1_Read_AFM( FT_Face t1_face,
FT_Stream stream )
{
FT_Error error;
FT_Memory memory = stream->memory;
FT_Byte* start;
FT_Byte* limit;
FT_Byte* p;
FT_Int count = 0;
T1_Kern_Pair* pair;
T1_Font* type1 = &((T1_Face)t1_face)->type1;
T1_AFM* afm = 0;
2000-05-17 01:44:38 +02:00
if ( ACCESS_Frame(stream->size) )
return error;
2000-05-17 01:44:38 +02:00
start = (FT_Byte*)stream->cursor;
limit = (FT_Byte*)stream->limit;
p = start;
2000-05-17 01:44:38 +02:00
/* we are now going to count the occurences of "KP" or "KPX" in */
/* the AFM file.. */
count = 0;
for ( p = start; p < limit-3; p++ )
{
if ( IS_KERN_PAIR(p) )
count++;
}
/* Actually, kerning pairs are simply optional !! */
if (count == 0)
goto Exit;
2000-05-17 01:44:38 +02:00
/* allocate the pairs */
if ( ALLOC( afm, sizeof(*afm ) ) ||
ALLOC_ARRAY( afm->kern_pairs, count, T1_Kern_Pair ) )
goto Exit;
2000-05-17 01:44:38 +02:00
/* now, read each kern pair */
pair = afm->kern_pairs;
afm->num_pairs = count;
2000-05-17 01:44:38 +02:00
/* save in face object */
((T1_Face)t1_face)->afm_data = afm;
for ( p = start; p < limit-3; p++ )
{
if ( IS_KERN_PAIR(p) )
{
FT_Byte* q;
2000-05-17 01:44:38 +02:00
/* skip keyword (KP or KPX) */
q = p+2;
if (*q == 'X') q++;
2000-05-17 01:44:38 +02:00
pair->glyph1 = afm_atoindex( &q, limit, type1 );
pair->glyph2 = afm_atoindex( &q, limit, type1 );
pair->kerning.x = afm_atoi( &q, limit );
2000-05-17 01:44:38 +02:00
pair->kerning.y = 0;
if ( p[2] != 'X' )
pair->kerning.y = afm_atoi( &q, limit );
2000-05-17 01:44:38 +02:00
pair++;
}
}
2000-05-17 01:44:38 +02:00
/* now, sort the kern pairs according to their glyph indices */
qsort( afm->kern_pairs, count, sizeof(T1_Kern_Pair), compare_kern_pairs );
2000-05-17 01:44:38 +02:00
Exit:
if (error)
FREE( afm );
FORGET_Frame();
return error;
}
2000-05-17 01:44:38 +02:00
/* find the kerning for a given glyph pair */
LOCAL_FUNC
void T1_Get_Kerning( T1_AFM* afm,
FT_UInt glyph1,
FT_UInt glyph2,
FT_Vector* kerning )
{
T1_Kern_Pair *min, *mid, *max;
FT_ULong index = KERN_INDEX(glyph1,glyph2);
2000-05-17 01:44:38 +02:00
/* simple binary search */
min = afm->kern_pairs;
max = min + afm->num_pairs-1;
2000-05-17 01:44:38 +02:00
while (min <= max)
{
FT_ULong midi;
2000-05-17 01:44:38 +02:00
mid = min + (max-min)/2;
2000-05-17 01:44:38 +02:00
midi = KERN_INDEX(mid->glyph1,mid->glyph2);
if ( midi == index )
{
*kerning = mid->kerning;
return;
}
2000-05-17 01:44:38 +02:00
if ( midi < index ) min = mid+1;
else max = mid-1;
}
kerning->x = 0;
kerning->y = 0;
}