freetype/src/type1z/z1parse.c

1399 lines
38 KiB
C
Raw Normal View History

/***************************************************************************/
/* */
/* z1parse.c */
/* */
/* Experimental Type 1 parser (body). */
/* */
/* Copyright 1996-2000 by */
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
/* */
/* This file is part of the FreeType project, and may only be used, */
/* modified, and distributed under the terms of the FreeType project */
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
/* this file you indicate that you have read the license and */
/* understand and accept it fully. */
/* */
/***************************************************************************/
/*************************************************************************/
/* */
/* The Type 1 parser is in charge of the following: */
/* */
/* - provide an implementation of a growing sequence of objects called */
/* a `Z1_Table' (used to build various tables needed by the loader). */
/* */
/* - opening .pfb and .pfa files to extract their top-level and private */
/* dictionaries. */
/* */
/* - read numbers, arrays & strings from any dictionary. */
/* */
/* See `z1load.c' to see how data is loaded from the font file. */
/* */
/*************************************************************************/
2000-05-17 01:44:38 +02:00
#include <freetype/internal/ftdebug.h>
#include <freetype/internal/ftcalc.h>
#include <freetype/internal/ftobjs.h>
#include <freetype/internal/ftstream.h>
#include <freetype/internal/t1errors.h>
#ifdef FT_FLAT_COMPILE
#include "z1parse.h"
#else
#include <type1z/z1parse.h>
#endif
#include <string.h> /* for strncmp() */
/*************************************************************************/
/* */
/* The macro FT_COMPONENT is used in trace mode. It is an implicit */
/* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
/* messages during execution. */
/* */
#undef FT_COMPONENT
#define FT_COMPONENT trace_z1parse
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/***** *****/
/***** IMPLEMENTATION OF Z1_TABLE OBJECT *****/
/***** *****/
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/* */
/* <Function> */
/* Z1_New_Table */
/* */
/* <Description> */
/* Initialises a Z1_Table. */
/* */
/* <InOut> */
/* table :: The address of the target table. */
/* */
/* <Input> */
/* count :: The table size = the maximum number of elements. */
/* */
/* memory :: The memory object to use for all subsequent */
/* reallocations. */
/* */
/* <Return> */
/* FreeType error code. 0 means success. */
/* */
LOCAL_FUNC
FT_Error Z1_New_Table( Z1_Table* table,
FT_Int count,
FT_Memory memory )
{
FT_Error error;
table->memory = memory;
if ( ALLOC_ARRAY( table->elements, count, FT_Byte* ) ||
ALLOC_ARRAY( table->lengths, count, FT_Byte* ) )
goto Exit;
table->max_elems = count;
table->init = 0xdeadbeef;
table->num_elems = 0;
table->block = 0;
table->capacity = 0;
table->cursor = 0;
Exit:
if ( error )
FREE( table->elements );
2000-05-17 01:44:38 +02:00
return error;
}
static
void shift_elements( Z1_Table* table,
FT_Byte* old_base )
{
FT_Long delta = table->block - old_base;
FT_Byte** offset = table->elements;
FT_Byte** limit = offset + table->max_elems;
if ( delta )
for ( ; offset < limit; offset++ )
{
if ( offset[0] )
offset[0] += delta;
}
}
2000-05-17 01:44:38 +02:00
static
FT_Error reallocate_t1_table( Z1_Table* table,
FT_Int new_size )
{
FT_Memory memory = table->memory;
FT_Byte* old_base = table->block;
FT_Error error;
2000-05-17 01:44:38 +02:00
/* reallocate the base block */
if ( REALLOC( table->block, table->capacity, new_size ) )
return error;
2000-05-17 01:44:38 +02:00
table->capacity = new_size;
/* shift all offsets if necessary */
if ( old_base )
shift_elements( table, old_base );
return T1_Err_Ok;
}
/*************************************************************************/
/* */
/* <Function> */
/* Z1_Add_Table */
/* */
/* <Description> */
/* Adds an object to a Z1_Table, possibly growing its memory block. */
/* */
/* <InOut> */
/* table :: The target table. */
/* */
/* <Input> */
/* index :: The index of the object in the table. */
/* */
/* object :: The address of the object to copy in memory. */
/* */
/* length :: The length in bytes of the source object. */
/* */
/* <Return> */
/* FreeType error code. 0 means success. An error is returned if a */
/* reallocation fails. */
/* */
LOCAL_FUNC
FT_Error Z1_Add_Table( Z1_Table* table,
FT_Int index,
void* object,
FT_Int length )
{
if ( index < 0 || index > table->max_elems )
{
FT_ERROR(( "Z1_Add_Table: invalid index\n" ));
return T1_Err_Syntax_Error;
}
/* grow the base block if needed */
if ( table->cursor + length > table->capacity )
{
FT_Error error;
FT_Int new_size = table->capacity;
while ( new_size < table->cursor + length )
new_size += 1024;
error = reallocate_t1_table( table, new_size );
if ( error )
return error;
}
/* add the object to the base block and adjust offset */
table->elements[index] = table->block + table->cursor;
table->lengths [index] = length;
MEM_Copy( table->block + table->cursor, object, length );
table->cursor += length;
return T1_Err_Ok;
}
#if 0
/*************************************************************************/
/* */
/* <Function> */
/* Z1_Done_Table */
/* */
/* <Description> */
/* Finalizes a Z1_Table (i.e., reallocate it to its current cursor). */
/* */
/* <InOut> */
/* table :: The target table. */
/* */
/* <Note> */
/* This function does NOT release the heap's memory block. It is up */
/* to the caller to clean it, or reference it in its own structures. */
/* */
LOCAL_FUNC
void Z1_Done_Table( Z1_Table* table )
{
FT_Memory memory = table->memory;
FT_Error error;
FT_Byte* old_base;
/* should never fail, as rec.cursor <= rec.size */
old_base = table->block;
if ( !old_base )
return;
2000-05-17 01:44:38 +02:00
(void)REALLOC( table->block, table->capacity, table->cursor );
table->capacity = table->cursor;
2000-05-17 01:44:38 +02:00
if ( old_base != table->block )
shift_elements( table, old_base );
}
#endif /* 0 */
LOCAL_FUNC
void Z1_Release_Table( Z1_Table* table )
{
FT_Memory memory = table->memory;
2000-05-17 01:44:38 +02:00
if ( table->init == (FT_Long)0xDEADBEEF )
{
FREE( table->block );
FREE( table->elements );
FREE( table->lengths );
table->init = 0;
}
}
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
/***** *****/
/***** INPUT STREAM PARSER *****/
/***** *****/
/*************************************************************************/
/*************************************************************************/
/*************************************************************************/
#define IS_Z1_WHITESPACE( c ) ( (c) == ' ' || (c) == '\t' )
#define IS_Z1_LINESPACE( c ) ( (c) == '\r' || (c) == '\n' )
#define IS_Z1_SPACE( c ) ( IS_Z1_WHITESPACE( c ) || IS_Z1_LINESPACE( c ) )
LOCAL_FUNC
void Z1_Skip_Spaces( Z1_Parser* parser )
{
FT_Byte* cur = parser->cursor;
FT_Byte* limit = parser->limit;
while ( cur < limit )
{
FT_Byte c = *cur;
if ( !IS_Z1_SPACE( c ) )
break;
cur++;
}
parser->cursor = cur;
}
LOCAL_FUNC
void Z1_ToToken( Z1_Parser* parser,
Z1_Token_Rec* token )
{
FT_Byte* cur;
FT_Byte* limit;
FT_Byte starter, ender;
FT_Int embed;
token->type = t1_token_none;
token->start = 0;
token->limit = 0;
/* first of all, skip space */
Z1_Skip_Spaces( parser );
cur = parser->cursor;
limit = parser->limit;
if ( cur < limit )
{
switch ( *cur )
{
/************* check for strings ***********************/
case '(':
token->type = t1_token_string;
ender = ')';
goto Lookup_Ender;
/************* check for programs/array ****************/
case '{':
token->type = t1_token_array;
ender = '}';
goto Lookup_Ender;
/************* check for table/array ******************/
case '[':
token->type = t1_token_array;
ender = ']';
Lookup_Ender:
embed = 1;
starter = *cur++;
token->start = cur;
while ( cur < limit )
{
if ( *cur == starter )
embed++;
else if ( *cur == ender )
{
embed--;
if ( embed <= 0 )
{
token->limit = cur++;
break;
}
}
cur++;
}
break;
/* **************** otherwise, it's any token **********/
default:
token->start = cur++;
token->type = t1_token_any;
while ( cur < limit && !IS_Z1_SPACE( *cur ) )
cur++;
token->limit = cur;
}
if ( !token->limit )
{
token->start = 0;
token->type = t1_token_none;
}
parser->cursor = cur;
}
}
LOCAL_FUNC
void Z1_ToTokenArray( Z1_Parser* parser,
Z1_Token_Rec* tokens,
FT_UInt max_tokens,
FT_Int* pnum_tokens )
{
Z1_Token_Rec master;
*pnum_tokens = -1;
Z1_ToToken( parser, &master );
if ( master.type == t1_token_array )
{
FT_Byte* old_cursor = parser->cursor;
FT_Byte* old_limit = parser->limit;
Z1_Token_Rec* cur = tokens;
Z1_Token_Rec* limit = cur + max_tokens;
parser->cursor = master.start;
parser->limit = master.limit;
while ( parser->cursor < parser->limit )
{
Z1_Token_Rec token;
Z1_ToToken( parser, &token );
if ( !token.type )
break;
if ( cur < limit )
*cur = token;
cur++;
}
*pnum_tokens = cur - tokens;
parser->cursor = old_cursor;
parser->limit = old_limit;
}
}
static
FT_Long t1_toint( FT_Byte** cursor,
FT_Byte* limit )
{
FT_Long result = 0;
FT_Byte* cur = *cursor;
2000-07-31 14:14:27 +02:00
FT_Byte c = '\0', d;
2000-05-17 01:44:38 +02:00
for ( ; cur < limit; cur++ )
{
c = *cur;
d = (FT_Byte)( c - '0' );
if ( d < 10 )
break;
2000-05-17 01:44:38 +02:00
if ( c == '-' )
{
cur++;
break;
}
}
2000-05-17 01:44:38 +02:00
if ( cur < limit )
{
do
{
d = (FT_Byte)( cur[0] - '0' );
if ( d >= 10 )
break;
2000-05-17 01:44:38 +02:00
result = result * 10 + d;
cur++;
2000-05-17 01:44:38 +02:00
} while ( cur < limit );
2000-05-17 01:44:38 +02:00
if ( c == '-' )
result = -result;
}
2000-05-17 01:44:38 +02:00
*cursor = cur;
return result;
}
static
FT_Long t1_tofixed( FT_Byte** cursor,
FT_Byte* limit,
FT_Long power_ten )
{
FT_Byte* cur = *cursor;
FT_Long num, divider, result;
FT_Int sign = 0;
FT_Byte d;
2000-05-17 01:44:38 +02:00
if ( cur >= limit )
return 0;
2000-05-17 01:44:38 +02:00
/* first of all, read the integer part */
result = t1_toint( &cur, limit ) << 16;
num = 0;
divider = 1;
2000-05-17 01:44:38 +02:00
if ( result < 0 )
{
sign = 1;
result = -result;
}
if ( cur >= limit )
goto Exit;
2000-05-17 01:44:38 +02:00
/* read decimal part, if any */
if ( *cur == '.' && cur + 1 < limit )
{
cur++;
2000-05-17 01:44:38 +02:00
for (;;)
{
d = (FT_Byte)( *cur - '0' );
if ( d >= 10 )
break;
if ( divider < 10000000L )
{
num = num * 10 + d;
divider *= 10;
}
cur++;
if ( cur >= limit )
break;
}
}
2000-05-17 01:44:38 +02:00
/* read exponent, if any */
if ( cur + 1 < limit && ( *cur == 'e' || *cur == 'E' ) )
{
cur++;
power_ten += t1_toint( &cur, limit );
}
2000-05-17 01:44:38 +02:00
Exit:
/* raise to power of ten if needed */
while ( power_ten > 0 )
{
result = result * 10;
num = num * 10;
power_ten--;
}
2000-05-17 01:44:38 +02:00
while ( power_ten < 0 )
{
result = result / 10;
divider = divider * 10;
power_ten++;
}
if ( num )
result += FT_DivFix( num, divider );
if ( sign )
result = -result;
2000-05-17 01:44:38 +02:00
*cursor = cur;
return result;
}
static
FT_Int t1_tocoordarray( FT_Byte** cursor,
FT_Byte* limit,
FT_Int max_coords,
FT_Short* coords )
{
FT_Byte* cur = *cursor;
FT_Int count = 0;
FT_Byte c, ender;
2000-05-17 01:44:38 +02:00
if ( cur >= limit )
goto Exit;
/* check for the beginning of an array. If not, only one number will */
/* be read */
c = *cur;
ender = 0;
2000-05-17 01:44:38 +02:00
if ( c == '[' )
ender = ']';
2000-05-17 01:44:38 +02:00
if ( c == '{' )
ender = '}';
2000-05-17 01:44:38 +02:00
if ( ender )
cur++;
/* now, read the coordinates */
for ( ; cur < limit; )
{
/* skip whitespace in front of data */
for (;;)
{
c = *cur;
if ( c != ' ' && c != '\t' )
break;
2000-05-17 01:44:38 +02:00
cur++;
if ( cur >= limit )
goto Exit;
}
2000-05-17 01:44:38 +02:00
if ( count >= max_coords || c == ender )
break;
2000-05-17 01:44:38 +02:00
coords[count] = (FT_Short)( t1_tofixed( &cur, limit, 0 ) >> 16 );
count++;
2000-05-17 01:44:38 +02:00
if ( !ender )
break;
}
2000-05-17 01:44:38 +02:00
Exit:
*cursor = cur;
return count;
}
static
FT_Int t1_tofixedarray( FT_Byte** cursor,
FT_Byte* limit,
FT_Int max_values,
FT_Fixed* values,
FT_Int power_ten )
{
FT_Byte* cur = *cursor;
FT_Int count = 0;
FT_Byte c, ender;
2000-05-17 01:44:38 +02:00
if ( cur >= limit ) goto Exit;
/* check for the beginning of an array. If not, only one number will */
/* be read */
c = *cur;
ender = 0;
2000-05-17 01:44:38 +02:00
if ( c == '[' )
ender = ']';
2000-05-17 01:44:38 +02:00
if ( c == '{' )
ender = '}';
2000-05-17 01:44:38 +02:00
if ( ender )
cur++;
/* now, read the values */
for ( ; cur < limit; )
{
/* skip whitespace in front of data */
for (;;)
{
c = *cur;
if ( c != ' ' && c != '\t' )
break;
2000-05-17 01:44:38 +02:00
cur++;
if ( cur >= limit )
goto Exit;
}
if ( count >= max_values || c == ender )
break;
2000-05-17 01:44:38 +02:00
values[count] = t1_tofixed( &cur, limit, power_ten );
count++;
2000-05-17 01:44:38 +02:00
if ( !ender )
break;
}
2000-05-17 01:44:38 +02:00
Exit:
*cursor = cur;
return count;
}
#if 0
static
FT_String* t1_tostring( FT_Byte** cursor,
FT_Byte* limit,
FT_Memory memory )
{
FT_Byte* cur = *cursor;
FT_Int len = 0;
FT_Int count;
FT_String* result;
FT_Error error;
/* XXX: some stupid fonts have a `Notice' or `Copyright' string */
/* that simply doesn't begin with an opening parenthesis, even */
/* though they have a closing one! E.g. "amuncial.pfb" */
/* */
/* We must deal with these ill-fated cases there. Note that */
/* these fonts didn't work with the old Type 1 driver as the */
/* notice/copyright was not recognized as a valid string token */
/* and made the old token parser commit errors. */
while ( cur < limit && ( *cur == ' ' || *cur == '\t' ) )
cur++;
if ( cur + 1 >= limit )
return 0;
2000-05-17 01:44:38 +02:00
if ( *cur == '(' )
cur++; /* skip the opening parenthesis, if there is one */
2000-05-17 01:44:38 +02:00
*cursor = cur;
count = 0;
2000-05-17 01:44:38 +02:00
/* then, count its length */
for ( ; cur < limit; cur++ )
{
if ( *cur == '(' )
count++;
2000-05-17 01:44:38 +02:00
else if ( *cur == ')' )
{
count--;
if ( count < 0 )
break;
}
}
2000-05-17 01:44:38 +02:00
len = cur - *cursor;
if ( cur >= limit || ALLOC( result, len + 1 ) )
return 0;
2000-05-17 01:44:38 +02:00
/* now copy the string */
MEM_Copy( result, *cursor, len );
result[len] = '\0';
*cursor = cur;
2000-05-17 01:44:38 +02:00
return result;
}
#endif /* 0 */
static
int t1_tobool( FT_Byte** cursor,
FT_Byte* limit )
{
FT_Byte* cur = *cursor;
FT_Bool result = 0;
2000-05-17 01:44:38 +02:00
/* return 1 if we find `true', 0 otherwise */
if ( cur + 3 < limit &&
cur[0] == 't' &&
cur[1] == 'r' &&
cur[2] == 'u' &&
cur[3] == 'e' )
{
result = 1;
cur += 5;
}
else if ( cur + 4 < limit &&
cur[0] == 'f' &&
cur[1] == 'a' &&
cur[2] == 'l' &&
cur[3] == 's' &&
cur[4] == 'e' )
{
result = 0;
cur += 6;
}
*cursor = cur;
return result;
}
/* Load a simple field (i.e. non-table) into the current list of objects */
LOCAL_FUNC
FT_Error Z1_Load_Field( Z1_Parser* parser,
const Z1_Field_Rec* field,
void** objects,
FT_UInt max_objects,
FT_ULong* pflags )
{
Z1_Token_Rec token;
FT_Byte* cur;
FT_Byte* limit;
FT_UInt count;
FT_UInt index;
FT_Error error;
Z1_ToToken( parser, &token );
if ( !token.type )
goto Fail;
count = 1;
index = 0;
cur = token.start;
limit = token.limit;
if ( token.type == t1_token_array )
{
/* if this is an array, and we have no blend, an error occurs */
if ( max_objects == 0 )
goto Fail;
count = max_objects;
index = 1;
}
for ( ; count > 0; count--, index++ )
{
FT_Byte* q = (FT_Byte*)objects[index] + field->offset;
FT_Long val;
FT_String* string;
switch ( field->type )
{
case t1_field_bool:
val = t1_tobool( &cur, limit );
goto Store_Integer;
case t1_field_fixed:
val = t1_tofixed( &cur, limit, 3 );
goto Store_Integer;
case t1_field_integer:
val = t1_toint( &cur, limit );
Store_Integer:
switch ( field->size )
{
case 1:
*(FT_Byte*)q = (FT_Byte)val;
break;
case 2:
*(FT_UShort*)q = (FT_UShort)val;
break;
case 4:
*(FT_UInt32*)q = (FT_UInt32)val;
break;
default: /* for 64-bit systems */
*(FT_Long*)q = val;
}
break;
case t1_field_string:
{
FT_Memory memory = parser->memory;
FT_UInt len = limit-cur;
if ( ALLOC( string, len + 1 ) )
goto Exit;
MEM_Copy( string, cur, len );
string[len] = 0;
*(FT_String**)q = string;
}
break;
default:
/* an error occured */
goto Fail;
}
}
if ( pflags )
*pflags |= 1L << field->flag_bit;
error = FT_Err_Ok;
Exit:
return error;
Fail:
error = T1_Err_Invalid_File_Format;
goto Exit;
}
#define T1_MAX_TABLE_ELEMENTS 32
LOCAL_FUNC
FT_Error Z1_Load_Field_Table( Z1_Parser* parser,
const Z1_Field_Rec* field,
void** objects,
FT_UInt max_objects,
FT_ULong* pflags )
{
Z1_Token_Rec elements[T1_MAX_TABLE_ELEMENTS];
Z1_Token_Rec* token;
FT_Int num_elements;
FT_Error error = 0;
FT_Byte* old_cursor;
FT_Byte* old_limit;
Z1_Field_Rec fieldrec = *(Z1_Field_Rec*)field;
Z1_ToTokenArray( parser, elements, 32, &num_elements );
if ( num_elements < 0 )
goto Fail;
if ( num_elements > T1_MAX_TABLE_ELEMENTS )
num_elements = T1_MAX_TABLE_ELEMENTS;
old_cursor = parser->cursor;
old_limit = parser->limit;
/* we store the elements count */
*(FT_Byte*)( (FT_Byte*)objects[0] + field->count_offset ) = num_elements;
/* we now load each element, adjusting the field.offset on each one */
token = elements;
for ( ; num_elements > 0; num_elements--, token++ )
{
parser->cursor = token->start;
parser->limit = token->limit;
Z1_Load_Field( parser, &fieldrec, objects, max_objects, 0 );
fieldrec.offset += fieldrec.size;
}
if ( pflags )
*pflags |= 1L << field->flag_bit;
parser->cursor = old_cursor;
parser->limit = old_limit;
Exit:
return error;
Fail:
error = T1_Err_Invalid_File_Format;
goto Exit;
}
LOCAL_FUNC
FT_Long Z1_ToInt ( Z1_Parser* parser )
{
return t1_toint( &parser->cursor, parser->limit );
}
LOCAL_FUNC
FT_Long Z1_ToFixed( Z1_Parser* parser,
FT_Int power_ten )
{
return t1_tofixed( &parser->cursor, parser->limit, power_ten );
}
LOCAL_FUNC
FT_Int Z1_ToCoordArray( Z1_Parser* parser,
FT_Int max_coords,
FT_Short* coords )
{
return t1_tocoordarray( &parser->cursor, parser->limit,
max_coords, coords );
}
LOCAL_FUNC
FT_Int Z1_ToFixedArray( Z1_Parser* parser,
FT_Int max_values,
FT_Fixed* values,
FT_Int power_ten )
{
return t1_tofixedarray( &parser->cursor, parser->limit,
max_values, values, power_ten );
}
#if 0
LOCAL_FUNC
FT_String* Z1_ToString( Z1_Parser* parser )
{
return t1_tostring( &parser->cursor, parser->limit, parser->memory );
}
LOCAL_FUNC
FT_Bool Z1_ToBool( Z1_Parser* parser )
{
return t1_tobool( &parser->cursor, parser->limit );
}
#endif /* 0 */
static
FT_Error read_pfb_tag( FT_Stream stream,
FT_UShort* tag,
FT_Long* size )
{
FT_Error error;
2000-05-17 01:44:38 +02:00
if ( READ_UShort( *tag ) )
goto Exit;
if ( *tag == 0x8001 || *tag == 0x8002 )
{
FT_Long asize;
2000-05-17 01:44:38 +02:00
if ( READ_ULong( asize ) )
goto Exit;
2000-05-17 01:44:38 +02:00
/* swap between big and little endianness */
*size = ( ( asize & 0xFF000000L ) >> 24 ) |
( ( asize & 0x00FF0000L ) >> 8 ) |
( ( asize & 0x0000FF00L ) << 8 ) |
( ( asize & 0x000000FFL ) << 24 );
}
2000-05-17 01:44:38 +02:00
Exit:
return error;
}
LOCAL_FUNC
FT_Error Z1_New_Parser( Z1_Parser* parser,
FT_Stream stream,
FT_Memory memory )
{
FT_Error error;
FT_UShort tag;
FT_Long size;
2000-05-17 01:44:38 +02:00
parser->stream = stream;
parser->memory = memory;
parser->base_len = 0;
parser->base_dict = 0;
parser->private_len = 0;
parser->private_dict = 0;
parser->in_pfb = 0;
parser->in_memory = 0;
parser->single_block = 0;
2000-05-17 01:44:38 +02:00
parser->cursor = 0;
parser->limit = 0;
2000-05-17 01:44:38 +02:00
/******************************************************************/
/* */
/* Here a short summary of what is going on: */
/* */
/* When creating a new Type 1 parser, we try to locate and load */
/* the base dictionary if this is possible (i.e. for PFB */
/* files). Otherwise, we load the whole font into memory. */
/* */
/* When `loading' the base dictionary, we only setup pointers */
/* in the case of a memory-based stream. Otherwise, we */
/* allocate and load the base dictionary in it. */
/* */
/* parser->in_pfb is set if we are in a binary (".pfb") font. */
/* parser->in_memory is set if we have a memory stream. */
/* */
2000-05-17 01:44:38 +02:00
/* try to compute the size of the base dictionary; */
/* look for a Postscript binary file tag, i.e 0x8001 */
if ( FILE_Seek( 0L ) )
goto Exit;
2000-05-17 01:44:38 +02:00
error = read_pfb_tag( stream, &tag, &size );
if ( error )
goto Exit;
if ( tag != 0x8001 )
{
/* assume that this is a PFA file for now; an error will */
/* be produced later when more things are checked */
(void)FILE_Seek( 0L );
size = stream->size;
}
else
parser->in_pfb = 1;
/* now, try to load `size' bytes of the `base' dictionary we */
/* found previously */
2000-05-17 01:44:38 +02:00
/* if it is a memory-based resource, set up pointers */
if ( !stream->read )
{
parser->base_dict = (FT_Byte*)stream->base + stream->pos;
parser->base_len = size;
parser->in_memory = 1;
2000-05-17 01:44:38 +02:00
/* check that the `size' field is valid */
if ( FILE_Skip( size ) )
goto Exit;
}
else
{
/* read segment in memory */
if ( ALLOC( parser->base_dict, size ) ||
FILE_Read( parser->base_dict, size ) )
goto Exit;
parser->base_len = size;
}
2000-05-17 01:44:38 +02:00
/* Now check font format; we must see `%!PS-AdobeFont-1' */
/* or `%!FontType' */
{
if ( size <= 16 ||
( strncmp( (const char*)parser->base_dict,
"%!PS-AdobeFont-1", 16 ) &&
strncmp( (const char*)parser->base_dict,
"%!FontType", 10 ) ) )
{
FT_TRACE2(( "[not a Type1 font]\n" ));
error = FT_Err_Unknown_File_Format;
}
else
{
parser->cursor = parser->base_dict;
parser->limit = parser->cursor + parser->base_len;
}
}
Exit:
if ( error && !parser->in_memory )
FREE( parser->base_dict );
return error;
}
LOCAL_FUNC
void Z1_Done_Parser( Z1_Parser* parser )
{
FT_Memory memory = parser->memory;
/* always free the private dictionary */
FREE( parser->private_dict );
/* free the base dictionary only when we have a disk stream */
if ( !parser->in_memory )
FREE( parser->base_dict );
}
/* return the value of an hexadecimal digit */
static
int hexa_value( char c )
{
unsigned int d;
d = (unsigned int)( c - '0' );
if ( d <= 9 )
return (int)d;
d = (unsigned int)( c - 'a' );
if ( d <= 5 )
return (int)( d + 10 );
d = (unsigned int)( c - 'A' );
if ( d <= 5 )
return (int)( d + 10 );
return -1;
}
LOCAL_FUNC
void Z1_Decrypt( FT_Byte* buffer,
FT_Int length,
FT_UShort seed )
{
while ( length > 0 )
{
FT_Byte plain;
plain = ( *buffer ^ ( seed >> 8 ) );
seed = ( *buffer + seed ) * 52845 + 22719;
*buffer++ = plain;
length--;
}
}
LOCAL_FUNC
FT_Error Z1_Get_Private_Dict( Z1_Parser* parser )
{
FT_Stream stream = parser->stream;
FT_Memory memory = parser->memory;
FT_Error error = 0;
FT_Long size;
2000-05-17 01:44:38 +02:00
if ( parser->in_pfb )
{
/* in the case of the PFB format, the private dictionary can be */
/* made of several segments. We thus first read the number of */
/* segments to compute the total size of the private dictionary */
/* then re-read them into memory. */
FT_Long start_pos = FILE_Pos();
FT_UShort tag;
FT_Long size;
2000-05-17 01:44:38 +02:00
parser->private_len = 0;
for (;;)
{
error = read_pfb_tag( stream, &tag, &size );
if ( error )
goto Fail;
2000-05-17 01:44:38 +02:00
if ( tag != 0x8002 )
break;
2000-05-17 01:44:38 +02:00
parser->private_len += size;
if ( FILE_Skip( size ) )
goto Fail;
}
/* Check that we have a private dictionary there */
/* and allocate private dictionary buffer */
if ( parser->private_len == 0 )
{
FT_ERROR(( "Z1_Get_Private_Dict:" ));
FT_ERROR(( " invalid private dictionary section\n" ));
error = T1_Err_Invalid_File_Format;
goto Fail;
}
if ( FILE_Seek( start_pos ) ||
ALLOC( parser->private_dict, parser->private_len ) )
goto Fail;
parser->private_len = 0;
for (;;)
{
error = read_pfb_tag( stream, &tag, &size );
if ( error || tag != 0x8002 )
{
error = FT_Err_Ok;
break;
}
if ( FILE_Read( parser->private_dict + parser->private_len, size ) )
goto Fail;
parser->private_len += size;
}
}
else
{
/* we have already `loaded' the whole PFA font file into memory; */
/* if this is a memory resource, allocate a new block to hold */
/* the private dict. Otherwise, simply overwrite into the base */
/* dictionary block in the heap. */
/* first of all, look at the `eexec' keyword */
FT_Byte* cur = parser->base_dict;
2000-05-17 01:44:38 +02:00
FT_Byte* limit = cur + parser->base_len;
FT_Byte c;
2000-05-17 01:44:38 +02:00
for (;;)
{
c = cur[0];
if ( c == 'e' && cur + 9 < limit ) /* 9 = 5 letters for `eexec' + */
/* newline + 4 chars */
{
if ( cur[1] == 'e' && cur[2] == 'x' &&
cur[3] == 'e' && cur[4] == 'c' )
{
cur += 6; /* we skip the newling after the `eexec' */
2000-05-17 01:44:38 +02:00
/* XXX: Some fonts use DOS-linefeeds, i.e. \r\n; we need to */
/* skip the extra \n if we find it */
if ( cur[0] == '\n' )
cur++;
2000-05-17 01:44:38 +02:00
break;
}
}
cur++;
if ( cur >= limit )
{
FT_ERROR(( "Z1_Get_Private_Dict:" ));
FT_ERROR(( " could not find `eexec' keyword\n" ));
error = T1_Err_Invalid_File_Format;
goto Exit;
}
}
2000-05-17 01:44:38 +02:00
/* now determine where to write the _encrypted_ binary private */
/* dictionary. We overwrite the base dictionary for disk-based */
/* resources and allocate a new block otherwise */
2000-05-17 01:44:38 +02:00
size = parser->base_len - ( cur - parser->base_dict);
2000-05-17 01:44:38 +02:00
if ( parser->in_memory )
{
/* note that we allocate one more byte to put a terminating `0' */
if ( ALLOC( parser->private_dict, size + 1 ) )
goto Fail;
parser->private_len = size;
}
else
{
2000-05-17 01:44:38 +02:00
parser->single_block = 1;
parser->private_dict = parser->base_dict;
parser->private_len = size;
parser->base_dict = 0;
parser->base_len = 0;
}
2000-05-17 01:44:38 +02:00
/* now determine whether the private dictionary is encoded in binary */
/* or hexadecimal ASCII format -- decode it accordingly */
/* we need to access the next 4 bytes (after the final \r following */
/* the `eexec' keyword); if they all are hexadecimal digits, then */
/* we have a case of ASCII storage */
if ( ( hexa_value( cur[0] ) | hexa_value( cur[1] ) |
hexa_value( cur[2] ) | hexa_value( cur[3] ) ) < 0 )
/* binary encoding -- `simply' copy the private dict */
MEM_Copy( parser->private_dict, cur, size );
else
2000-05-17 01:44:38 +02:00
{
/* ASCII hexadecimal encoding */
2000-05-17 01:44:38 +02:00
FT_Byte* write;
FT_Int count;
write = parser->private_dict;
count = 0;
2000-05-17 01:44:38 +02:00
for ( ;cur < limit; cur++ )
{
int hex1;
2000-05-17 01:44:38 +02:00
/* check for newline */
if ( cur[0] == '\r' || cur[0] == '\n' )
continue;
2000-05-17 01:44:38 +02:00
/* exit if we have a non-hexadecimal digit that isn't a newline */
hex1 = hexa_value( cur[0] );
if ( hex1 < 0 || cur + 1 >= limit )
break;
2000-05-17 01:44:38 +02:00
/* otherwise, store byte */
*write++ = ( hex1 << 4 ) | hexa_value( cur[1] );
count++;
cur++;
}
2000-05-17 01:44:38 +02:00
/* put a safeguard */
parser->private_len = write - parser->private_dict;
*write++ = 0;
}
}
2000-05-17 01:44:38 +02:00
/* we now decrypt the encoded binary private dictionary */
Z1_Decrypt( parser->private_dict, parser->private_len, 55665 );
parser->cursor = parser->private_dict;
parser->limit = parser->cursor + parser->private_len;
Fail:
Exit:
return error;
}
2000-05-17 01:44:38 +02:00
/* END */